Самые известные звезды

Содержание:

Как узнали из чего состоят звезды

Конечно, люди еще в древние-древние времена видели эти прекрасные и сияющие точки на ночном небе. Со временем их научились оценивать по цвету и светимости, даже узнали расстояние до них. Но состав звёзд долго оставался загадкой. Долго человечество строило догадки. И лишь в середине 19 века занавес тайны приоткрылся благодаря появлению методики спектрального анализа.

Как оказалось, любой источник света обладает собственным спектром, который зависит от составляющих веществ. Они могут поглощать и пропускать спектральные линии. Таким образом, анализ спектра звезды помог учёным определить из чего же они состоят.Что интересно, по химическому составу и массе звезд учёные определяют их возраст и судьбу.

Солнечный спектр

Между прочим, существует целая наука о составе и природе звёзд — Астрофизика. Именно она изучает строение, физические свойства и химический состав космических объектов.

В заключении, ещё раз отметим, что определенный химический состав звёзд определяет их жизненный путь и то, какие этапы эволюции их ожидают. Помимо этого, он влияет на формирование других космических объектов нашей Вселенной. Главным образом, тех, в которые светило будет входить и формировать.

Метод

Определять состав светил астрономы научились только в середине XIX века. Именно тогда в арсенале исследователей космоса появился спектральный анализ. Метод основан на свойстве атомов различных элементов излучать и поглощать свет на строго определенных резонансных частотах. Соответственно на спектре видны темные и светлые полосы, расположенные на местах, характерных для данного вещества.

Разные источники света можно отличить по рисунку из линий поглощения и излучения. Спектральный анализ успешно применяется для определения состава звезд. Его данные помогают исследователям понять очень многие процессы, происходящие внутри светил и недоступные непосредственному наблюдению.

Созвездия северного полушария — список с картинками

К сожалению, нельзя увидеть все 28 созвездий в одну ночь, небесная механика неумолима. Но взамен мы имеем приятное разнообразие. Зимнее и летнее небо выглядят по-разному.

Поговорим о самых интересных и заметных созвездиях.

Большая Медведица – главный ориентир ночного неба. С его помощью легко найти другие астрономические объекты.

Кончик хвоста Малой Медведицы – знаменитая Полярная Звезда. У небесных медведей длинные хвосты, в отличие от земных родичей.

Дракон – большое созвездие между Медведицами. Нельзя не упомянуть μ Дракона которая называется Арракис, что в переводе с древнеарабского значит «танцор». Кума (ν Дракона) – двойная, что наблюдается в обычный бинокль.

Известно, что ρ Кассиопеи – сверхгигант, он в сотни тысяч раз ярче Солнца. В 1572 году в Кассиопее произошел последний на сегодня взрыв.

Древние греки не пришли к единому мнению, чья это Лира. Разные легенды отдают ее разным героям – Аполлону, Орфею или Ориону. Небезызвестная Вега входит в Лиру.

Орион самое заметное астрономическое образование нашего неба. Крупные звезды пояса Ориона зовутся тремя царями или волхвами. Знаменитая Бетельгейзе расположена тут.

Цефей можно наблюдать круглый год. Через 8 000 лет одна из его звезд – Альдерамин станет новой полярной звездой.

В Андромеде лежит туманность М31. Это соседняя галактика, ясной ночью видная невооруженным глазом. Туманность Андромеды удалена от нас на 2 млн. световых лет.

Красивым названием созвездие Волосы Вероники обязано египетской цариц, принесшей в жертву богам свои волосы. В направлении Волос Вероники находится северный полюс нашей галактики.

Альфа Волопаса – знаменитый Арктур. За Волопасом, на самом краю наблюдаемой вселенной, находится галактика Egsy8p7. Это один из самых далеких объектов, известных астрономам, до него 13,2 млрд. световых лет.

Как устроены нейтронные звезды

В отличие от других тел они, главным образом, состоят из нейтронного центра (сердцевины). Отсюда, кстати, и появилось название типа.

А сверху их покрывает кора, образуемая тяжёлыми атомными ядрами, нейтронами и электронами.Помимо этого в структуре рассматриваемых светил выделяют несколько частей.

Внутреннее строение

Какое строение имеют нейтронные звезды

Атмосфера — тоненький (не более 100 см) слой ионизированного газа, то есть плазмы. Здесь сосредоточено тепловое излучение тела.

Внешняя кора содержит ядра и электроны, по толщине может быть несколько сотен метров. Притом в ней газ представлен в разных составах. Например, самые верхние покровы состоят из невырожденного газа, а в середине он уже вырожденный. Чем глубже, тем его состояние меняется на релятивистское и ультрарелятивистское вырождение.

Внутренняя кора включает в себя электроны, свободные нейтроны и ядра атомов с множеством нейтронов. Причем количество нейтронных частиц увеличивается с глубиной. Данный слой имеет протяжённость до нескольких километров.

Внешнее ядро выделяют у объектов малой массы. Поскольку может занимать всё пространство до звёздного центра. Вдобавок оно состоит преимущественно из нейтронов. Хотя некоторая доля протонов и электронов все же есть.

Внутреннее ядро наблюдается только у массивных светил. Оно отличается высокой плотностью. А радиус, по меньшей мере, составляет несколько километров. К сожалению, точный состав внутреннего вещества ещё не известен. Но определённо в нём присутствую нейтроны, барионы и кварки. Конечно, дальнейшее изучение и исследования продолжаются. И мы когда-нибудь узнаем все тайны нейтронных звезд.

Типы двойных звезд

Различают следующие типы двойных звезд:

Физические двойные звезды или двойные звездные системы

Это две звезды, которые гравитационно связаны из-за их пространственной близости и движутся вокруг общего центра тяжести в соответствии с законами Кеплера . Большинство физических двойных звездных систем сформировалось во время звездообразования . Другие только позже объединились, чтобы сформировать связанную двойную звездную систему путем захвата под влиянием по крайней мере еще одной звезды. Захваченные двойные звезды обычно имеют разный возраст и металличность из-за их независимого образования .

Оптические двойные звезды (кажущиеся двойные звезды)

Оптические двойные звезды — это звезды, которые расположены на небе почти в одном направлении от Земли, но настолько разно удалены от Земли, что не влияют друг на друга гравитационным образом . Хорошо известна очень заметная звездная пара α / β Центавра на угловом расстоянии всего 4 °, что делает южное небо вокруг Южного Креста столь привлекательным. Однако истинные расстояния составляют 4,3 и 530 световых лет соответственно .

Этот тип видимых двойных звезд, среди которых есть и гораздо более близкие, вряд ли представляет интерес для астрофизики , но для других областей астрономии, таких как астрометрия (совсем другое правильное движение !), Астрономическая фотография или просто для наблюдений за телом. звездное небо.

Другой пример, который еще не был полностью прояснен, — это « глазомер » в созвездии Большой Медведицы (или Большой Медведицы), состоящий из двух звезд на расстоянии 11 футов друг от друга: более светлый Мицар (ζ¹ Ursae majoris, расстояние 78 световых лет) и « Маленький Всадник », сидящий на нем« Алькор (ζ² UMa, 81 световой год) в середине «тяги автомобиля». Две звезды находятся на расстоянии около 3 световых лет друг от друга, что намного превышает размер Солнечной системы (6 световых часов до Плутона ) и более сопоставимо с расстоянием до наших соседних звезд Проксима и α Центавра .

Пока не совсем ясно, действительно ли две звезды, Мицар и Алькор, вращаются вокруг друг друга, из-за большого расстояния и, как следствие, небольшой кривизны орбиты. Алькор приближается к более крупной звездной системе Мицар (которая сама по себе является тесной четверной системой), но относительная скорость может быть слишком большой для постоянной близости (→  гиперболическая орбита ). В положительном случае взаимный орбитальный период составит около 1  миллиона лет . Двойную звезду Мицар / Алькор можно легко разделить невооруженным глазом с нормальным зрением — «маленький всадник» (на 2 уровня яркости меньше) сидит Мицар на 0,19 ° севернее. Звездная пара использовалась в средние века как объект для проверки зрения арабских воинов вдаль.

Геометрические двойные звезды (пространственные двойные звезды)

Геометрические двойные звезды — это звезды, которые пространственно близки друг к другу, но из-за их высоких относительных скоростей не связаны друг с другом и описывают общую гиперболическую орбиту вокруг своего общего центра тяжести. Это разовое событие звездной встречи ; две звезды образуют (геометрическую) двойную звезду только в течение ограниченного времени, а затем никогда больше не встретятся.

Ранее считалось, что Проксима Центавра является возможным геометрическим компаньоном Альфы Центавра . Однако с 2016 года выяснилось, что Проксима Центавра гравитационно связана с двумя другими звездами Альфы Центавра и, следовательно, не является геометрической двойной звездой. См. Также: .

Как происходит эволюция звёзд на последнем этапе

Конечно, спустя какое-то время, запасы гелия иссякнут. И он начнёт сгорать в слоевом источнике около ядра. Которое, в свою очередь, будет сжиматься и нагреваться. В это время водородная оболочка, наоборот, расширяется и остывает. Таким образом звезда трансформируется из красного карлика в сверхгигант.

На следующем этапе своей жизни в центрах звезд с массой от 0.5 до 8 солнечных масс образуется углеродно-кислородное ядро, наполненное вырожденным газом. Собственно, вот и сформировался белый карлик. Но его оболочка всё продолжает расширяться и, наконец, она отделяется от светила.

Более того, уже отделившаяся оболочка не прекращает увеличиваться и, в конце концов, превращается в планетарную туманность. А звезда, как уже было сказано, остаётся белым карликом с вырожденным газом.

Планетарная туманность Глаз Бога

Жизнь светил с высокой массой

Эволюция светил с высокой массой (от 8 до 10 солнечных) происходит по тому же сценарию, как и со средней. Но у них не успевает образоваться углеродно-кислородное ядро. Потому как оно сжимается и вырождается, а лишь затем начинает гореть углерод.И вместо гелиевой вспышки происходит углеродная. Её также называют углеродной детонацией.

Иногда подобная детонация приводит к взрыву звезды как сверхновой. А иногда светило эволюционирует в неё без взрыва (при увеличении температуры в недрах газ может не вырождаться) и продолжает свою жизнь.

Во Вселенной есть очень массивные звёзды (около 10 солнечных масс). В результате того, что они очень горячие, внутри их ядра гелий начинает гореть, а они не успевают достигнуть стадии красного гиганта. Под действием различных факторов и процессов такие светила вырабатывают тяжёлые элементы.

Таким образом происходит ядерный коллапс (разрушение), которое в зависимости от ядерной массы может сформировать либо нейтронную звезду, либо даже чёрную дыру.

Эволюция звёзд

Можно сказать, что рождение и эволюция звезд начинается в результате ядерных реакций. А также заканчивается, когда они прекращаются.

Конечно, развитие и длительность жизни звёзд разная, так как процессы в них протекают по-разному. Более того, конечные стадии их эволюции также отличаются. Да, есть определённые закономерности, но будущее неизвестно никому. Ведь, например, при расширении одного светила, оно может зацепить другое. Почему бы нет? Наверное, вы поняли, что большую роль играет масса тела и процессы, в нём протекающие.

В любом случае, происхождение таких различных между собой космических объектов, таких красивейших и прекрасных, является одним из чудес Вселенной. А их бесчисленное множество, участие в образовании других, не менее восхитительных объектов, играет огромную роль в развитии нашего космоса.

Желтые, оранжевые и красные звезды (adsbygoogle = window.adsbygoogle || []).push({});

Виды звезд по цвету распределяются от голубых к красным, по мере понижения температуры и уменьшения размеров и светимости объекта.

Звезды класса G, к которым относится и Солнце, достигают температуры от 5 до 6 тыс. К, они желтого цвета. Масса таких объектов – от 1,1 до 1,7 с. м., радиус – от 1,1 до 1,3 с. р. Светимость – от 1,2 до 6 с. с. Спектральные линии гелия и металлов интенсивны, линии водорода все слабее.

Светила, относящиеся к классу К, имеют температуру от 3,5 до 5 тыс. К. Выглядят они желто-оранжевыми, но истинный цвет этих звезд – оранжевый. Радиус данных объектов находится в промежутке от 0,9 до 1,1 с. р., масса – от 0,8 до 1,1 с. м. Яркость колеблется от 0,4 до 1,2 с. с. Линии водорода практически незаметны, линии металлов очень сильны.

Самые холодные и маленькие звезды – класса М. Их температура всего 2,5 – 3,5 тыс. К и кажутся они красными, хотя на самом деле эти объекты оранжево-красного цвета. Масса звезд находится в промежутке от 0,3 до 0,8 с. м., радиус – от 0,4 до 0,9 с. р. Светимость – всего 0,04 — 0,4 с. с. Это умирающие звезды. Холоднее их только недавно открытые коричневые карлики. Для них выделили отдельный класс М-Т.

Звездные скопления

Астрономы очень любят исследовать скопления звезд. Есть гипотеза, что все светила рождаются именно группами, а не поодиночке. Так как звезды, принадлежащие к одному скоплению, обладают схожими свойствами, то и различия между ними являются истинными, а не обусловленными расстоянием до Земли. Какие бы изменения не приходились на долю этих звезд, свое начало они берут в одно и то же время и при равных условиях. Особенно много знаний можно получить, изучая зависимость их свойств от массы. Ведь возраст звезд в скоплениях и их удаленность от Земли примерно равны, поэтому отличаются они только по этому показателю. Скопления будут интересны не только профессиональным астрономам – каждый любитель будет рад сделать красивую фотографию, полюбоваться их исключительно красивым видом в планетарии.

На что обращали внимание древние астрономы

Первоначальная классификация звезд основывалась на их яркости. Ведь именно этот критерий является единственно доступным для астронома, вооруженного только телескопом. Самые яркие или обладающие уникальными видимыми свойствами звезды даже получали собственные имена, причем у каждого народа они свои. Так, Денеб, Ригель и Алголь – названия арабские, Сириус – латинское, а Антарес – греческое. Полярная звезда в каждом народе имеет собственное название. Это, пожалуй, одна из самых важных в «практическом смысле» звезд. Ее координаты на ночном небосводе неизменны, несмотря на вращение земли. Если остальные звезды движутся по небу, проходя путь от восхода до заката, то Полярная звезда не меняет своего местоположения. Поэтому именно ее использовали моряки и путешественники в качестве надежного ориентира. Кстати, вопреки распространенному заблуждению, это вовсе не самая яркая звезда на небосклоне. Полярная звезда внешне никак не выделяется – ни по размерам, ни по интенсивности свечения. Найти ее можно, только если знать, куда смотреть. Она располагается на самом конце «рукоятки ковша» Малой Медведицы.

Какие виды звёзд существуют

Итак, выделим основные виды звезд:

  • Светила главной последовательности — на этом этапе они проводят до 90% всей своей жизни. Главным образом, основные термоядерные реакции связаны с горением водорода. В результате чего формируется гелиевое ядро.
  • Коричневые карлики — интересный тип субзвёздных объектов. В их ядре также протекают термоядерные реакции, но основе лежит горение лёгких элементов. Например, бора, лития, бериллия или дейтерия. Поэтому тепловыделение и излучение у подобных тел быстро заканчивается. Что, соответственно, приводит к их остыванию, а затем превращению в планетоподобные объекты.
  • Красные карлики отличаются долгой продолжительностью жизни, поскольку горение водорода в них проходит медленно. Вероятно, поэтому красных карликов больше других звёздных тел во Вселенной. Хотя из-за медленных процессов и слабого излучения, они не видны с нашей планеты без специальных приборов.
  • Красные гиганты образуются после того, как сгорит весь водородный запас, что приводит к гелиевой вспышке и расширению звезды.
  • Белые карлики имеют малую массу. Можно сказать, это остаток от красных гигантов, скинувших свою оболочку. При взрыве начинается процесс горения углерода и кислорода. Светило увеличивает атмосферные границы, быстро теряет газ и превращается в белый карлик.
  • Сверхгиганты — массивный тип светил, которые из-за происходящих внутри реакций быстро покидают стадию главной последовательности. Для них характерна низкая температура, но высокий показатель светимости.
  • Переменные звёзды — это те, у которых хотя бы раз за весь жизненный цикл изменялся блеск. Чаще всего это связано с внутренними процессами. Однако и внешние факторы могут повлиять на изменение блеска. К примеру, если звёздный свет пройдёт сквозь гравитационное поле.
  • Главная последовательность
  • Коричневый карлик
  • Проксима Центавра (красный карлик)
  • Белый карлик Сириус B
  • Голубой сверхгигант Ригель
  • Красный гигант и солнце

Помимо этого, выделяют и другие виды звезд:

  • Новые звёзды — это особый тип переменных, с достаточно резким изменением блеска. Собственно говоря, скачки светимости провоцируют вспышки тела с различными амплитудами.
  • Сверхновые — это те, которые на конечном этапе эволюции взрываются. Причем их взрыв или вспышка очень мощные.
  • Гиперновые или проще говоря, большие сверхновые звёзды. После того, как источники поддержания термоядерных реакций иссякают, происходит коллапс. Что интересно, сила и мощность их неминуемого взрыва превышает обычных сверхновых приблизительно в 100 раз.
  • LBV (Яркие голубые переменные) или переменные типа S Золотой Рыбы являются пульсирующими гипергигантами. Для них свойственны неправильные изменения блеска с колебаниями от 1 до 7 m. Правда, это очень редкие и недолго живущие звезды, которые всегда окружают туманности.
  • ULX (Ультраяркие рентгеновские источники) — космические объекты, обладающие сильным рентгеновским излучением. Их переменность может варьироваться от секунд до нескольких лет. Вероятно, что их источником излучения является чёрная дыра. На самом деле, мало изучены, редкие.
  • Нейтронные звёзды, на самом деле, представляют собой образования из нейтронов (нейтральных субатомных частиц). Поскольку эти частицы сильно сжимаются силами гравитации, то плотность светил также очень высокая. Между прочим, её часть сравнивают со средней плотностью атомного ядра. И это при том, что радиус нейтронных объектов составляет от 10 до 20 км, а масса равна примерно 1,5 солнечных масс.
  • Двойные звёзды или системы отличаются, главным образом, тем, что состоят их пары светил, связанных между собой силами гравитации. К удивлению, наша Галактика наполовину состоит именно из двойных звёзд.
  • Уникальные (объект Стефенсона-Сандьюлика) — это двойная затменная система звёзд. Один из компонентов представляет массивное светило с высокой температурой и светимостью, а другой небольшое тело (может быть нейтронным образованием или даже чёрной дырой). В результате взаимодействия компонентов производится сильнейшее рентгеновское излучение. На данным момент, к уникальным относится лишь одна система SS 433.
  • Взрыв гиперновой
  • Нейтронная звезда
  • Двойная звезда Сириус
  • Объект Стефенсона-Сандьюлика (SS 433)

Как видно, виды звёзд нашей Вселенной могут быть разные. Стоит отметить, что они отличаются друг от друга по своему звёздному размеру и массе, составу, температуре, расстоянию до нас и другим характеристикам. Но несмотря на это, среди всех небесных тел они носят гордое название — звезда.

Геркулес

Месторасположение Геркулеса – северное полушарие. Площадь созвездия составляет 1225 квадратных градусов. Считается одним из самых узнаваемых.

Трапеция – торс титана, самая заметная часть. Жители России могут наблюдать его целиком, лишь некоторая часть созвездия скрывается за горизонтом в момент нижней кульминации, наиболее благоприятное время – июнь.

Первоначальное название Коленопреклоненный. Древний поэт Арат описывал созвездие как страдающего мужа, причины страданий были неизвестны.

В V до н.э. веке созвездие переименовали, его стали называть Гераклом. Позже оно получило название Геркулес.

Названия звезд по цвету

Цвет звезды зависит от температуры, а температура зависит от массы и возраста. Самые горячие – это молодые массивные голубые гиганты, их температура поверхности доходит до 60 000 Кельвинов, а масса до 60 солнечных. Ненамного уступают звезды класса В, ярким представителем которых является Спика, альфа созвездия Девы.

Самые холодные – маленькие, старые красные карлики. В среднем температура поверхности составляет 2-3 тысячи Кельвинов, а масса – треть от солнечной. На схеме хорошо видно как цвет зависит от размера.

По температуре и цвету звезды делят на 7 спектральных классов, обозначенных в астрономическом описании объекта латинскими буквами.

Гидра

Гидра – самое длинное созвездие, его площадь 1300 кв. градусов. Место расположения – Южное полушарие.

В России его лучше всего наблюдать в конце зимы или весной. Полностью увидеть созвездие смогут жители южных городов.

229 звезд можно наблюдать без помощи телескопа и бинокля, но особой яркостью они не отличаются.

В созвездии много интересных звезд: Альфа Гидра, Гамма, Кси Гидры, а также рассеянные скопления.

Прообраз – Водяной змей. Ворон Аполлона отправился за водой и слишком долго отсутствовал. В качестве извинения за задержку птица принесла богу змея. Разгневавшийся Аполлон швырнул в небо ворона, змея и чашу с водой. Так появились созвездия Ворон и Гидра.

По другой версии, Гидра – противник Геракла, семиглавое чудовище.

Переменные звёзды

Переменные звёзды – виды звёзд, в которых наблюдается (хотя бы один раз) перемена значения их блеска. Причины этому разные, как внутренние процессы, так и то, что звезда состоит в двойной системе.

Существуют разные виды переменных звёзд, различающиеся механизмами изменения их блеска.

Пульсирующие переменные

Изменение блеска в таких звёздах происходят из-за периодического расширения (сжатия) их поверхностных слоёв. Причём эти пульсации бывают двух видов: радиальные и не радиальные. В первых, при пульсации сферическая форма звезды сохраняется, а у вторых – нет.

Эруптивные переменные

Такие звёзды изменяют свой блеск за счет происходящих, в их коронах и фотосферах, бурных процессов, а также вспышек. Такие процессы возникают вследствие каких-то изменений или же сильного звёздного ветра, идущего от таких звёзд с разной интенсивностью.

Вращающиеся переменные

В этих звёздах поверхностная яркость неоднородная или же они имеют неправильную (не элипсообразную форму). Неоднородность поверхностной яркости можно объяснить как наличием пятен на поверхности звезды, так и наличием химических или температурных поверхностных неоднородностей.

Катаклизмические переменные (новоподобные и взрывные)

Изменение яркости в таких звёздах вызваны взрывными процессами, происходящими в разных слоях звезды. Глубоко в недрах – сверхновые звёзды, в поверхностных слоях – новые.

Такие виды звёзд переменной яркости занимают очень малый количественный процент, среди остальных.

Затменно-двойные системы

Этот подкласс переменных звёзд представляют собой двойные системы, вращающиеся за счёт общего центра масс, и расположены близко друг к другу. Наблюдатель фиксирует перемену яркости, из-за затмения одной из звёзд другой.

Старение звезды и изменение состава

Со временем термоядерные реакции внутри звезд постепенно изменяют их состав. Главной и самой простой реакцией синтеза, который протекает в большинстве звезд во Вселенной, и в нашем Солнце в том числе, является протон-протонный цикл. В нем четыре атома водорода сливаются воедино, образуя в итоге один атом гелия и очень большой выход энергии — до 98% общей энергии звезды.

Такой процесс называется еще «горением» водорода: в Солнце «сгорает» до 4 миллионов тонн водорода ежесекундно.

Изменение состава на примере Солнца

Количество гелия в ядре Солнца будет увеличиваться; соответственно, будет расти объем ядра звезды. Из-за этого увеличится площадь термоядерной реакции, а вместе с ней — интенсивность свечения и температура Солнца. Через 1 миллиард лет (в возрасте 5,6 млрд лет) энергия звезды вырастет на 10%. В возрасте 8 миллиардов лет (через 3 млрд лет от сегодняшнего дня) солнечное излучение составит 140% от современного.

Рост интенсивности протон-протонной реакции сильно отразится на составе звезды — водород, мало затронутый с момента рождения, станет сгорать куда быстрее. Нарушится баланс между оболочкой Солнца и его ядром — водородная оболочка станет расширяться, а гелиевое ядро, наоборот, сужаться. В возрасте 11 миллиардов лет сила излучения из ядра звезды станет слабее сжимающей его гравитации — греть ядро теперь станет именно растущее сжатие.

Существенные изменения в составе звезды произойдут еще через миллиард лет, когда температура и сжатие ядра Солнца вырастет настолько, что запустится следующая стадия термоядерной реакции — «горение» гелия.

В итоге реакции, атомные ядра гелия сначала сбиваются вместе, превращаясь в нестабильную форму бериллия, а затем в углерод и кислород. Сила этой реакции невероятно велика — когда будут зажигаться нетронутые островки гелия, Солнце будет вспыхивать до 5200 раз ярче, чем сегодня!

Во время этих процессов ядро Солнца будет продолжать накаляться, а оболочка расширится до границ орбиты Земли и значительно остынет — ибо чем больше площадь излучения, тем больше энергии теряет тело. Пострадает и масса светила: потоки звездного ветра будут уносить остатки гелия, водорода и новообразованных углерода с кислородом в далекий космос.

Так наше Солнце превратится в красного гиганта. Полностью завершится развитие светила тогда, когда оболочка звезды окончательно истощится, и останется только плотное, горячее и маленькое ядро — белый карлик. Оно медленно будет остывать миллиардами лет.

Изменение состава звезд-гигантов

Цепочка трансформации крупных звезд куда дольше: она доходит вплоть до самого железа. Создаются и элементы потяжелее. У таких звезд уже нет пути назад — они взорвутся сверхновой, оставив по себе черную дыру или нейтронную звезду.

Хотя углерод и кислород существуют в звезде одновременно, во время реакций синтеза они создают вещества, распределяющиеся на принципиально разных уровнях звезды.

Так, углерод порождает легкие вещества, вроде неона, натрия или магния.

Кислород же создает тяжелые неметаллы, наподобие серы или фосфора, или неплотные металлы, как вот алюминий. А вместе с азотом они участвуют в CNO-цикле горения водорода — основном термоядерном процессе в больших звездах Главной последовательности.

Общие сведения

Самое распространенное определение звезды в астрономии — образование из раскаленного газа в форме шара. По мере развития жизненного цикла изменяется структура и состав светил. Поскольку невозможно увидеть их строение воочию, создаются модели, основанные на сложных вычислениях. В структуре звезд обычно выделяют:

  • Ядро, в котором проходят реакции термоядерного синтеза (РТС). Здесь находятся только свободные ядра атомов и электроны, поэтому они упакованы гораздо плотнее, чем если бы это были целые атомы.
  • Зона переноса лучистой энергии. Во время её прохождения лучи сохраняют количество энергии, но меняются качественно, увеличивая длину волны. Например, из недр Солнца выходят рентгеновские и гамма-лучи, а с поверхности — световые и инфракрасные.
  • Зона конвекции, где происходит перемешивание газовых слоев. У более старых светил эта область меньше, а внешние со временем разрастаются.
  • Фотосфера и хромосфера. На внешней поверхности звёзд часто наблюдаются выбросы газа — протуберанцы.

В космосе распространены самые разные звездные системы, состоящие из двух, трех и более звезд. Главное условие того, что объекты составляют систему — они должны вращаться вокруг общего центра тяжести. Самые горячие светила — белые и голубые гиганты. Холодные звезды бывают красными гигантами или почти остывшими коричневыми карликами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector