Из чего состоят звезды? объекты глубокого космоса

Звездная эволюция

Основываясь на массе звезды, можно определить весь ее эволюционный путь, так как он проходит по определенным шаблонным этапам. Есть звезды промежуточной массы (как Солнце) в 1.5-8 раз больше солнечной массы, более 8, а также до половины солнечной массы. Интересно, что чем больше масса звезды, тем короче ее жизненный срок. Если она достигает меньше десятой части солнечной, то такие объекты попадают в категорию коричневых карликов (не могут зажечь ядерный синтез).

Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.

Этапы эволюции звезды

Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.

Процессы формирования и смерти у звезды с высокой массой происходят невероятно быстро. Нужно всего 10000-100000 лет, чтобы она перешла от протозвезды. В период главной последовательности это горячие и голубые объекты (от 1000 до миллиона раз ярче Солнца и в 10 раз шире). Далее мы видим красного сверхгиганта, начинающего сплавлять углерод в более тяжелые элементы (10000 лет). В итоге формируется железное ядро с шириною в 6000 км, чье ядерное излучение больше не может противостоять силе притяжения.

Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино.  Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.

Туманность Эскимоса — один из последних этапов эволюции небольшой звезды

Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это пульсар. Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в черную дыру.

Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.

Как происходит эволюция звёзд на последнем этапе

Конечно, спустя какое-то время, запасы гелия иссякнут. И он начнёт сгорать в слоевом источнике около ядра. Которое, в свою очередь, будет сжиматься и нагреваться. В это время водородная оболочка, наоборот, расширяется и остывает. Таким образом звезда трансформируется из красного карлика в сверхгигант.

На следующем этапе своей жизни в центрах звезд с массой от 0.5 до 8 солнечных масс образуется углеродно-кислородное ядро, наполненное вырожденным газом. Собственно, вот и сформировался белый карлик. Но его оболочка всё продолжает расширяться и, наконец, она отделяется от светила.

Более того, уже отделившаяся оболочка не прекращает увеличиваться и, в конце концов, превращается в планетарную туманность. А звезда, как уже было сказано, остаётся белым карликом с вырожденным газом.

Планетарная туманность Глаз Бога

Жизнь светил с высокой массой

Эволюция светил с высокой массой (от 8 до 10 солнечных) происходит по тому же сценарию, как и со средней. Но у них не успевает образоваться углеродно-кислородное ядро. Потому как оно сжимается и вырождается, а лишь затем начинает гореть углерод.И вместо гелиевой вспышки происходит углеродная. Её также называют углеродной детонацией.

Иногда подобная детонация приводит к взрыву звезды как сверхновой. А иногда светило эволюционирует в неё без взрыва (при увеличении температуры в недрах газ может не вырождаться) и продолжает свою жизнь.

Во Вселенной есть очень массивные звёзды (около 10 солнечных масс). В результате того, что они очень горячие, внутри их ядра гелий начинает гореть, а они не успевают достигнуть стадии красного гиганта. Под действием различных факторов и процессов такие светила вырабатывают тяжёлые элементы.

Таким образом происходит ядерный коллапс (разрушение), которое в зависимости от ядерной массы может сформировать либо нейтронную звезду, либо даже чёрную дыру.

Эволюция звёзд

Можно сказать, что рождение и эволюция звезд начинается в результате ядерных реакций. А также заканчивается, когда они прекращаются.

Конечно, развитие и длительность жизни звёзд разная, так как процессы в них протекают по-разному. Более того, конечные стадии их эволюции также отличаются. Да, есть определённые закономерности, но будущее неизвестно никому. Ведь, например, при расширении одного светила, оно может зацепить другое. Почему бы нет? Наверное, вы поняли, что большую роль играет масса тела и процессы, в нём протекающие.

В любом случае, происхождение таких различных между собой космических объектов, таких красивейших и прекрасных, является одним из чудес Вселенной. А их бесчисленное множество, участие в образовании других, не менее восхитительных объектов, играет огромную роль в развитии нашего космоса.

Список созвездий неба в алфавитном порядке

Русское название Латинское название Сокращение Площадь (кв. градусы) Число звёзд ярче 6,0m
Андромеда Andromeda And 722 100
Близнецы Gemini Gem 514 70
Большая Медведица Ursa Major UMa 1280 125
Большой Пёс Canis Major CMa 380 80
Весы Libra Lib 538 50
Водолей Aquarius Aqr 980 90
Возничий Auriga Aur 657 90
Волк Lupus Lup 334 70
Волопас Bootes Boo 907 90
Волосы Вероники Coma Berenices Com 386 50
Ворон Corvus Crv 184 15
Геркулес Hercules Her 1225 140
Гидра Hydra Hya 1303 130
Голубь Columba Col 270 40
Гончие Псы Canes Venatici CVn 465 30
Дева Virgo Vir 1294 95
Дельфин Delphinus Del 189 30
Дракон Draco Dra 1083 80
Единорог Monoceros Mon 482 85
Жертвенник Ara Ara 237 30
Живописец Pictor Pic 247 30
Жираф Camelopardalis Cam 757 50
Журавль Grus Gru 366 30
Заяц Lepus Lep 290 40
Змееносец Ophiuchus Oph 948 100
Змея Serpens Ser 637 60
Золотая Рыба Dorado Dor 179 20
Индеец Indus Ind 294 20
Кассиопея Cassiopeia Cas 598 90
Киль Carina Car 494 110
Кит Cetus Cet 1231 100
Козерог Capricornus Cap 414 50
Компас Pyxis Pyx 221 25
Корма Puppis Pup 673 140
Лебедь Cygnus Cyg 804 150
Лев Leo Leo 947 70
Летучая Рыба Volans Vol 141 20
Лира Lyra Lyr 286 45
Лисичка Vulpecula Vul 268 45
Малая Медведица Ursa Minor UMi 256 20
Малый Конь Equuleus Equ 72 10
Малый Лев Leo Minor LMi 232 20
Малый Пёс Canis Minor CMi 183 20
Микроскоп Microscopium Mic 210 20
Муха Musca Mus 138 30
Насос Antlia Ant 239 20
Наугольник Norma Nor 165 20
Овен Aries Ari 441 50
Октант Octans Oct 291 35
Орёл Aquila Aql 652 70
Орион Orion Ori 594 120
Павлин Pavo Pav 378 45
Паруса Vela Vel 500 110
Пегас Pegasus Peg 1121 100
Персей Perseus Per 615 90
Печь Fornax For 398 35
Райская Птица Apus Aps 206 20
Рак Cancer Cnc 506 60
Резец Caelum Cae 125 10
Рыбы Pisces Psc 889 75
Рысь Lynx Lyn 545 60
Северная Корона Corona Borealis CrB 179 20
Секстант Sextans Sex 314 25
Сетка Reticulum Ret 114 15
Скорпион Scorpius Sco 497 100
Скульптор Sculptor Scl 475 30
Столовая Гора Mensa Men 153 15
Стрела Sagitta Sge 80 20
Стрелец Sagittarius Sgr 867 115
Телескоп Telescopium Tel 252 30
Телец Taurus Tau 797 125
Треугольник Triangulum Tri 132 15
Тукан Tucana Tuc 295 25
Феникс Phoenix Phe 469 40
Хамелеон Chamaeleon Cha 132 20
Центавр (Кентавр) Centaurus Cen 1060 150
Цефей Cepheus Cep 588 60
Циркуль Circinus Cir 93 20
Часы Horologium Hor 249 20
Чаша Crater Crt 282 20
Щит Scutum Sct 109 20
Эридан Eridanus Eri 1138 100
Южная Гидра Hydrus Hyi 243 20
Южная Корона Corona Australis CrA 128 25
Южная Рыба Piscis Austrinus PsA 245 25
Южный Крест Crux Cru 68 30
Южный Треугольник Triangulum Australe TrA 110 20
Ящерица Lacerta Lac 201 35

Благодаря наблюдениям астрономов выяснилось, что расположение звезд с течением времени понемногу изменяется. На точные измерения этих изменений необходимо много сотен и тысяч лет. Ночное небо создает видимость бесчисленного количества небесных светил, беспорядочно находящихся по расположению друг к другу, которые часто вырисовывают созвездия на небе. На видимой части неба видно больше чем 3 тыс. звезд, а на всем небе — 6000.

Какие виды звёзд бывают?

Виды звезд

Во времена, когда единственным прибором, доступным астрономам, был оптический телескоп, критерием для классификации звезд была их яркость.

Сразу же, как только появилась возможность получать спектры звезд, была разработана классификация. Она базируется на спектральном анализе. Она гораздо лучше характеризует звезды, так как дает возможность выяснить их химический состав, массу и стадию развития.

Согласно спектральному составу все звезды разбиваются на классы в зависимости от их температуры. Каждому классу присвоена буква латинского алфавита. К самому высокому классу О относят наиболее горячие звезды, температура которых достигает 30-60 тысяч градусов Кельвина. Далее с понижением температуры следуют классы B, A, F, G. Буквами от М до Т обозначают светила, температура которых ниже 2-3,5 тысяч градусов Кельвина.

Кроме того, астрономы различают следующие виды звезд:

  • коричневый карлик – звезда, в которой ядерные процессы недостаточно интенсивны для того, чтобы компенсировать потери энергии от излучения;
  • белый карлик – звезда в фазе перестройки структуры. В результате перестройки осуществляется переход в состояние нейтронной звезды либо черной дыры;
  • красный гигант – звезда с невысокой плотностью и огромным объемом и светимостью, наиболее интенсивно излучающая в инфракрасной части спектра;
  • переменная звезда – светило с переменной интенсивностью излучения;
  • двойная звезда – светило, состоящее из двух шаров раскаленного газа, сходных по массе. Кстати, они вращаются по сложной траектории друг относительно друга и составляют единое целое;
  • новая или сверхновая звезда – светило, цикл развития которого подошел к концу. Он заканчивается взрывом с резким, но кратковременным многократным увеличением яркости;
  • нейтронная звезда – светило на поздней стадии эволюции, находящееся на стадии сжатия ядра. Поэтому она излучает не световые волны, а излучение в нейтронном, рентгеновском или радиодиапазоне;
  • черная дыра – звезда, процесс сжатия ядра которой достиг стадии, в которой ее гравитационное поле у поверхности настолько сильно, что не выпускает наружу даже излучение.

Эволюция состава звезд, отличных от Солнца

На этапе возгорания гелия термоядерные процессы в звезде размеров Солнца заканчиваются. Массы небольших звезд недостаточно для возгорания новообразованных углерода и кислорода — светило должно быть минимум в 5 раз массивнее Солнца, чтобы углерод начал ядерное преобразование.

Цепочка трансформации крупных звезд куда дольше: она доходит вплоть до самого железа. Создаются и элементы потяжелее. У таких звезд уже нет пути назад — они взорвутся сверхновой, оставив по себе черную дыру или нейтронную звезду. Последняя вообще не состоит из привычного для нас физического вещества — звезду наполняет сверхтекучая жидкость, которая настолько плотная, что протоны и электроны в ней слились в незаряженные частицы, нейтроны. Спичечный коробок гиперконцентрированного вещества звезды будет весить сотни миллионов тонн.

Финальная стадия эволюции масссивной звезды в разрезе

Хотя углерод и кислород существуют в звезде одновременно, во время реакций синтеза они создают вещества, распределяющиеся на принципиально разных уровнях звезды. Так, углерод порождает легкие вещества, вроде неона, натрия или магния. Кислород же создает тяжелые неметаллы, наподобие серы или фосфора, или неплотные металлы, как вот алюминий. А вместе с азотом они участвуют в CNO-цикле горения водорода — основном термоядерном процессе в больших звездах Главной последовательности. Там они катализируют ядерное «горение» водорода, делая его возможным при меньшем гравитационном сжатии.

Спектры излучения разных источников света

Интересный факт — один грамм водорода, «сгорающий» во время термоядерного синтеза, дает 98 тысяч киловатт-часов энергии. Для сравнения, один грамм урана в ядерном реакторе дает 22 тысячи кВт/ч, а обычное сжигание водорода — всего 4,4 ватт-часа.

Огни Вселенной

Звезда — это огромных размеров газовый шар, излучающий свет и тепло (в этом состоит главное её отличие от планет, которые, будучи абсолютно тёмными телами, способны лишь отражать падающие на них световые лучи). Энергия порождает свет и тепло, возникшая в результате термоядерных реакций, происходящих внутри ядра: в отличие от планет, в состав которых входят как твёрдые, так и лёгкие элементы, небесные светила имеют в своем составе легкие частицы с незначительной примесью твёрдых веществ (например, Солнце почти на 74% состоит из водорода и на 25% – из гелия).

Поскольку вес даже самой маленькой звёздочки значительно превосходит массу самых крупных планет, небесные светила обладают достаточной гравитацией для того, чтобы удерживать вокруг себя все объекты меньших размеров, которые начинают крутиться вокруг них, образуя планетную систему (в нашем случае – Солнечную).

Вспыхивающие светила

Интересно, что в астрономии существует такое понятие, как «новые звёзды» – при этом речь идёт не о появлении новых небесных тел: на протяжении своего существования горячие небесные тела умеренной светимости периодически ярко вспыхивают, причём они настолько сильно начинают выделяться на небосводе, что люди в прежние времена считали, будто это рождаются новые звёзды.

В действительности анализ данных показал, что эти небесные светила существовали и раньше, но из-за вздутия поверхности (газообразной фотосферы) внезапно приобрели особую яркость, увеличив своё свечение в десятки тысяч раз, в результате чего создаётся впечатление, будто на небе появились новые звёзды. Возвращаясь к первоначальному уровню яркости, новые звёзды могут изменять свой блеск до 400 тыс. раз (при этом, если сама вспышка длится лишь несколько дней, их возврат к предыдущему состоянию нередко длится годами).

Самые крутые бывшие звезды

Черная дыра — это то, что образуется, когда гравитация звезды достаточно сильная, чтобы преодолеть все другие силы и заставить звезду коллапсировать саму в себя до точки сингулярности. С ненулевой массой, но нулевым объемом такая точка в теории будет обладать бесконечной плотностью. Однако бесконечности в нашем мире встречаются редко, поэтому у нас просто нет хорошего объяснения тому, что происходит в центре черной дыры.

Черные дыры могут быть чрезвычайно массивными. Черные дыры, обнаруженные в центрах отдельных галактик, могут быть в десятки миллиардов солнечных масс. Более того, материя на орбите сверхмассивных черных дыр может быть очень яркой, ярче всех звезд галактик. Вблизи черной дыры могут быть также мощные джеты, движущиеся почти со скоростью света.

Пределы массы звезды

Несмотря на то, что Вселенная бесконечна, тела в ней имеют пределы, прописанные физическими законами. Особенно это касается сложных космических объектов вроде звезд, которые не просто собирают материю, но и излучают энергию.

Возьмем, к примеру, то же излучение. Для его начала требуется преодоления звездой массы в 10–15% процентов от солнечной — иначе водород просто не будет «гореть» в ядерной реакции. Но как только ядро звезды начинает выделять энергию, светило практически перестает набирать массу.

Почему? Дело в том, что звезды существуют за счет баланса между силами гравитации, стремящимися свернуть звезду в сверхплотный шар, и излучения, которое противостоит давлению. Сила энерговыделения, как мы уже знаем, растет вместе с массой. И когда звезда достигает массы в 150 солнечных (3 × 1029 ­кг), ее излучение станет сильнее гравитационного давления. От этого вещество светила просто разнесет по космосу.

Зажженная протозвезда

Интересный факт — преобладание гравитационного сжатия над излучением тоже закончится печально для звезды. Это происходит под конец жизни звезды, когда в ней заканчиваются термоядерные реакции. Тогда она сжимается в белый карлик, или же взрывается сверхновой, оставив по себе нейтронную звезду или даже черную дыру.

Но набрать 150 масс Солнца — уже большое достижение для светила. Звезды формируются в туманностях благодаря сферической аккреции. Проще говоря, звезды «наматывают» на себя спирали вещество со всех сторон. Светиться звезда начинает задолго до окончания своего рождения. Но когда масса «зародыша» светила превышает 10 солнечных (1,99 × 1028 кг), его излучение откинет от звезды материал из туманности, тем самым прекращая набор массы. Из отброшенной материи туманности часто формируются планеты и кометы.

Значит ли это, что 10 солнечных масс — это все, на что может рассчитывать среднестатистическая звезда? И является ли пределом массы планка в 150 Солнц? Ответ на оба вопроса — нет. Но превышение этих пределов требует особенных условий.

Пульсары

Основная функция пульсара – это появление мощных электрических полей, вырывающих заряженные частицы из звезды и ускоряющих их до высочайших показателей энергии. Это происходит за счет вращения и существования магнитного поля. Частицы, получившие ускорение, порождают кванты электромагнитного излучения (довольно жесткого состояния). Сложные электродинамические процессы небольшую часть энергии преобразуют в радиоволны, наблюдаемые от пульсаров. С вырванными с нейтронной звезды и ускоренными частицами энергия вращения затухает, период вращения пульсаров нарастает, и нейтронная звезда тормозит, благодаря собственному излучению!

При торможении электрический потенциал падает. В итоге наступает момент, когда заряженные частицы перестают образовываться и пульсар умирает. По времени это приблизительно 10 млн лет.

Другие атомы тяжёлых веществ

Несмотря на то, что вещества тяжелее гелия составляют всего 2% от всего светила, их значение очень велико. Ведь они влияют на скорость процессов внутри ядра. То есть могут либо ускорять, либо замедлять их. А это обуславливает яркость и длительность жизни звездного тела.

Как известно, чем тяжелее элемент, тем глубже он находится. Потому как тяжёлое сильнее притягивается силами гравитации. Соответственно, лёгкие элементы, наоборот, удерживаются снаружи.Таким образом, если в химическом составе присутствуют атомы тяжелее водорода и гелия, то они будут располагаться в самом ядре. Если звезда имеет массу выше средней и в ней есть, например, железо или любое другое тяжёлое вещество, то произойдёт взрыв сверхновой. Конечно, не сразу, а на конечном этапе своей эволюции. Но итог очевиден — превращение в нейтронную звезду или чёрную дыру.

Нейтронная звездаЧёрная дыра

По данным учёных, существуют светила с богатым содержанием кремния, железа марганца, углерода и других веществ. Очевидно, что преобладание определённых веществ, которые и составляют эти небольшие, но важные 2%, предопределяют её судьбу.

Помимо того, что они образуются в результате термоядерных процессов, на их формирование также влияет межзвездная среда. Потому что первоначальный состав, то есть облако из газа и пыли, может уже содержать какие-либо тяжёлые элементы. И они, собственно, невольно попадут в звёздный состав.

Что интересно, жёлтые и красные карлики богаты на тяжёлые элементы, а вот массивные светила не могут этим похвастаться.Если в массивной звезде преобладают атомы металлов, то при взрыве сверхновой остаток будет меньше.

6.3.2. Физические переменные звезды window.top.document.title = «6.3.2. Физические переменные звезды»;

Физическими переменными называются звезды, которые изменяют свою светимость в результате физических процессов, происходящих в самой звезде. Такие звезды могут и не иметь постоянную кривую блеска. Первую пульсирующую переменную открыл в 1596 году Фибрициус в созвездии Кита. Он назвал ее Мирой, что означает «чудесная, удивительная». В максимуме Мира хорошо видна невооруженным глазом, ее видимая звездная величина 2m, в период минимума она уменьшается до 10m, и видна только в телескоп. Средний период переменности Миры Кита 3 331,6 суток.


Рисунок 6.3.2.1.Полоса нестабильности на диаграмме Герцшпрунга – Рассела

В 1783 году Эдуард Пиготт обнаружил изменения блеска ? Орла с периодом 7,17 дней. В 1784 году Джон Гудрайк открыл переменность звезды ? Цефея (период 5,366 дней). Все переменные звезды, в том числе затменно-переменные, имеют специальные обозначения. Впереди названия соответствующего созвездия ставятся буквы латинского алфавита R, S, T… или просто букву V (англ. variable «переменный») с цифрами.

Модель 6.3.
Цефеиды

Цефеидами называются пульсирующие звезды высокой светимости, названные так по имени одной из первых открытых переменных звезд – ? Цефея. Это желтые сверхгиганты спектральных классов F и G, масса которых превосходит массу Солнца в несколько раз. В ходе эволюции цефеиды приобретают особую структуру – на определенной глубине возникает слой, который аккумулирует энергию, приходящую из ядра звезды, а затем отдает ее. Цефеиды периодически сжимаются, температура цефеид растет, уменьшается радиус. Затем площадь поверхности растет, ее температура уменьшается, что вызывает общее изменение блеска. Исследование спектров цефеид показывает, что периодически изменяются лучевые скорости: вблизи максимума блеска фотосферы этих звезд приближаются к нам с наибольшей скоростью, а вблизи минимума – с наибольшей скоростью удаляются от нас. Это следует из анализа спектров цефеид на основе эффекта Доплера. Таким образом, периодически изменяется радиус цефеиды. Чем больше период изменения блеска цефеиды, тем больше ее светимость.


Рисунок 6.3.2.2.Зависимость среднего блеска цефеид в Магеллановых Облаках от периода переменности

Цефеиды играют особую роль в астрономии. В 1908 году Генриетта Ливитт, изучая цефеиды в Малом Магеллановом Облаке, заметила, что чем меньше видимая звездная величина цефеиды, тем большее период изменения ее блеска. Поскольку все звезды ММО удалены от нас на примерно одинаковое расстояние, то видимая звездная величина m цефеид отражает ее светимость L. А так как сверхгиганты хорошо заметны на больших расстояниях, эту зависимость можно использовать для определения расстояний до галактик. Так, к 1999 году по измерениям 800 цефеид в 18 галактиках была уточнена постоянная Хаббла, которую теперь считают равной 70 км/с на 1 Мпк с точностью 10 %.

В 60-е годы советский астроном Юрий Ефремов установил, что чем продолжительнее период цефеиды, тем моложе эта звезда.

Звезды типа RR Лиры быстро меняют свой блеск. У большинства из них периоды заключаются в пределах 0,2–0,8 суток, а амплитуды блеска составляют в среднем около одной звездной величины. Это звезды спектральных классов А–F. Такие пульсирующие переменные часто встречаются в шаровых звездных скоплениях. Их свойства, как и свойства цефеид, используют для вычисления астрономических расстояний.

Особая группа переменных – молодые звезды типа T Тельца, впервые открытые Отто Васильевичем Струве в XIX веке. Они меняют свой блеск беспорядочным образом, но иногда у них прослеживаются и признаки периодичности, связанные с вращением вокруг оси.

R Северной Короны и похожие на нее звезды ведут себя совершенно непредсказуемым образом. Обычно эту звезду можно разглядеть невооруженным глазом. Каждые несколько лет ее блеск падает примерно до восьмой звездной величины, а затем постепенно растет, возвращаясь к прежнему уровню. По-видимому, эта звезда-сверхгигант сбрасывает с себя облака углерода, который конденсируется, образуя нечто вроде сажи. Если одно из этих густых черных облаков проходит между нами и звездой, оно заслоняет свет звезды, пока облако не рассеется в пространстве.

Звезды типа R Северной Короны производят густую пыль, что имеет немаловажное значение в областях, где образуются звезды. В таблице приведены наиболее известные переменные звезды

В наблюдении переменных звезд посильную помощь могут оказать и любители астрономии

В таблице приведены наиболее известные переменные звезды. В наблюдении переменных звезд посильную помощь могут оказать и любители астрономии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector