Что такое вселенная? масштабы и модель вселенной

Как возникает обитаемый мир?

Согласно земным религиям, сотворение мира является делом рук Бога. Однако, стоит лишь заменить основной религиозный термин на Высшие силы или Высший разум, и большинство вопросов и теологических разногласий отпадают сами собой. Возникновение и развитие Высшего разума можно сравнить с рождением и развитием ребенка. Путь к Его совершенствованию начался с осознания: «Я есть», «Я существую». В ходе развития Высшего разума возникают и исчезают миры.

Каждая вновь созданная Вселенная более совершенна изначально, с учетом ошибок прошлых созданий. После рождения нового мира, его обитателям предоставляется определенная свобода выбора в собственном развитии

Важно не нарушать основные принципы мироздания, т.е. развиваться и совершенствоваться, не застревать на низших ступенях духовного уровня, идти по жизни с любовью, радостью и благодарностью

Так же и Высший разум не стоит на месте, а продолжает улучшать сам себя.

Квантовый монизм

И вот здесь мы привлекаем интереснейшую концепцию «квантового монизма», предложенного философом Джонатаном Шаффером. Шаффер размышлял над вопросом, из чего состоит вселенная. Согласно квантовому монизму, фундаментальный слой реальности состоит не из частиц или струн, а из самой вселенной, понимаемой не как сумма составляющих ее вещей, а скорее как единое запутанное квантовое состояние.

Подобные мысли высказывались и ранее, например, физиком и философом Карлом Фридрихом фон Вайцзеккером: принятие квантовой механики всерьез предсказывает уникальную единую квантовую реальность, лежащую в основе мультивселенной. Однородность и крошечные колебания температуры космического микроволнового фона, которые указывают, что наблюдаемую вселенную можно проследить назад до единого квантового состояния, обычно связанного с квантовым полем первичной инфляции, поддерживают эту точку зрения.

Более того, этот вывод распространяется на другие концепции мультивселенных. Поскольку запутанность универсальна, она не ограничивается нашим космическим пузырем. Какой бы ни была мультивселенная, если вы принимаете квантовый монизм, все будет частью единого целого: всегда будет существовать более фундаментальный слой реальности, лежащий в основе множества вселенной внутри мультивселенной, и этот слой будет уникальным.

И квантовый монизм, и эвереттовская многомировая интерпретация являются предсказаниями квантовой механики. Отличает их только перспектива: то, что с точки зрения локального наблюдателя будет похоже на «множество миров», в действительности представляет собой единую уникальную вселенную с глобальной точки зрения (например, существа, которое может увидеть целую вселенную извне).

Другими словами, множество миров — это квантовый монизм глазами наблюдателя, располагающего ограниченной информацией о вселенной. Фактически, изначальная мотивация Эверетта состояла в разработке квантового описания всей вселенной в терминах «универсальной волновой функции». Взгляните на это, как через мутное окно: природа разделена на множество кусочков, но это лишь искажение перспективы.

Монизма и множественных миров можно избежать, но лишь в том случае, если кто-либо изменит формализм квантовой механики — обычно это вступает в противоречие со специальной теорией относительности Эйнштейна — или кто-то представит квантовую механику не как теорию о науке, но как о знании: человеческие представления, но не наука.

В своем нынешнем виде квантовый монизм следует рассматривать в качестве ключевого понятия в современной физике: он объясняет, почему «красота», воспринимаемая в виде структуры, корреляции и симметрии между внешне независимыми сферами природы, является не искаженным эстетическим идеалом, а следствием расщепления природы из единого квантового состояния. Кроме того, квантовый монизм также устраняет необходимость множественной вселенной, поскольку предсказывает корреляции, реализованные не только в отдельной рожденной вселенной, но и в любой отдельной ветви мультивселенной.

Наконец, квантовый монизм может решить кризис экспериментальной фундаментальной физики, которая полагается на все более крупные коллайдеры для изучения все более мелких составляющих природы. Потому что самые мелкие составляющие не будут являться фундаментальным слоем реальности. Изучение основ квантовой механики, новых сфер квантовой теории поля или крупнейших структур в космологии может быть таким же полезным.

Все это означает, что мы не должны прекращать поиски. В конце концов, этого стремления у нас не отнять. Где-то там, глубоко внизу, существует уникальная, понятная и фундаментальная реальность.

Это не может не радовать, да? Расскажите в нашем чате в Телеграме.

Войды и галактические нити

Если представить, что можно взглянуть на строение Вселенной со стороны, видно, что она состоит из плотных тел и пустот. Плотные тела или галактические нити представляют собой скопление и группы галактик. Между ними расположены войды или пустоты. На самом деле они непустые, просто концентрация небесных тел в них намного меньше.

Размеры войдов могут составлять от 10 до 150 мегапарсек. Учёные считают, что они занимают половину всего пространства Вселенной.

Из чего состоят галактические нити

Галактические нити – это одна из частей Вселенной. Состоят из галактик, образующих «стены», скопления, группы:

  • Иногда галактики объединяются в группы до 100. Они связаны гравитацией, отделены от других групп в пространстве.
  • Скопление галактик – это объединение их в систему, связанную гравитацией. Могут быть правильными и неправильными. Обычно включают более 100 галактик.
  • Сверхскопление галактик – это самое крупное образование. Состоит из групп, скоплений и отдельных галактик. Представляют собой разветвлённую сеть волокон, между которыми расположены войды.

Факты о Вселенной, которые кажутся фейком, но на самом деле на 100% правдивы

Поиск способов представить точные размеры Вселенной — занятие заведомо провальное, да и просто скажем — откровенно глупое. Но невероятные пространства окружающей нас черноты вовсе не означают, что попытки познания космоса проводить не нужно. Еще как нужно!

Знать объемы Вселенной, хотя бы очень и очень приблизительные, полезно даже обычному человеку, а не астрофизику или астрономам. Ведь все познается в сравнении, и это, во-первых, полезно для саморазвития, а во-вторых — просто интересно. Ведь кто бы мог подумать, что такие чудеса могут происходить в мире?!

Имея дело с порядками огромных и невероятно больших чисел, которые определяют Вселенную, легко потеряться в абстрактности, но не понять конкретных масштабов. Чтобы настроиться на нужный лад, можно провести один практический эксперимент. Ответьте на вопрос: сколько дней составляет 1 000 000 секунд? Ответ будет следующий: 11.5 дней. Теперь немного проще понять значение этого относительного числа на рельном временном отрезке.

Что ж, теперь вы готовы к восприятию 12 нестандартных фактов о размерах Вселенной .

Величайшая загадка Вселенной

Если каждый раз когда вы размышляете о Вселенной и о том, что она из себя представляет, вам кажется что вы ничего не знаете и не понимаете что там на самом деле происходит — это нормально. Нашему мозгу невероятно сложно осмыслить такие понятия как бесконечность, ланиакея и горизонт событий черной дыры. А когда речь заходит о темной материи и вовсе возникает ощущение, что темная материя — величайшая загадка нашей Вселенной.

По крайней мере ученые сегодня придерживаются именно такой точки зрения. Целью исследователей при создании 8 миллионов компьютерных симуляций Вселенных было желание понять, какую роль эта загадочная субстанция сыграла в жизни нашей Вселенной со времен Большого взрыва.

Диаметр Ланиакеи примерно равен 520 миллионам световых лет

Считается, что вскоре после рождения Вселенной, невидимая и неуловимая субстанция, получившае название «темная материя», при помощи силы гравитации преобразовалась в массивные облака, называемые гало темной материи. По мере того, как гало увеличивались в размерах, они привлекали редкий газообразный водород, пронизывающий Вселенную, чтобы объединиться и образовать звезды и галактики, которые мы видим сегодня. В этой теории темная материя действует как основа галактик, определяя процессы образования, слияния и развития с течением времени.

Чтобы лучше понять, какое влияние на формирование Вселенной оказала темная материя, ученые из университета Аризоны создали свои собственные Вселенные, используя суперкомпьютер. 2000 процессоров работали без перерыва в течение трех недель, имитируя более 8 миллионов уникальных Вселенных. Удивительным является то, что каждая Вселенная подчинялась уникальному набору правил, чтобы помочь исследователям понять связь между темной материей и эволюцией галактик.

Что мы знаем о Вселенной?

Чтобы ответить на вопрос о том, что находится за пределами вселенной, сначала нужно точно определить, что мы подразумеваем под «вселенной». Если вы воспринимаете это буквально как все вещи, которые могут существовать во всем пространстве и времени, то за пределами вселенной не может быть ничего. Даже если вы представляете, что вселенная имеет некоторый конечный размер, и представляете что-то вне этого объема, тогда все, что находится снаружи, также должно быть включено во вселенную.

Даже если вселенная представляет собой бесформенную, безымянную пустоту – абсолютное ничего – это все равно является чем-то и входит в список «всего существующего» — и, следовательно, по определению является частью вселенной. Если вселенная бесконечна по размеру, то беспокоиться об этой головоломке действительно не нужно. Вселенная, будучи всем, что есть, бесконечно велика и не имеет края, поэтому нет ничего «внешнего», о котором можно было бы говорить.


Часть наблюдаемой Вселенной, доступной для изучения современными астрономическими методами, называется Метагалактикой; она расширяется по мере совершенствования приборов.

С другой стороны, конечно, есть внешняя сторона нашего наблюдаемого участка Вселенной. Космос стар и свет распространяется быстро. Таким образом, за всю историю вселенной мы не получали свет от каждой отдельной галактики. В настоящее время ширина наблюдаемой Вселенной составляет около 90 миллиардов световых лет. И, по-видимому, за этой границей находятся миллиарды других случайных звезд и галактик.
Но есть ли что-то помимо этого?

Истинные границы

Вопрос об истинных размерах Вселенной до сих пор терзает подавляющее большинство учёных. Проблема заключается в том, что все уверены в её бесконечности. Но каждый под этим словом понимает своё. Одни из них считают, что наша Вселенная многомерна, и та её часть, где находимся мы, это всего лишь один из её слоёв. Вторые предполагают, что она фрактальна, значит, мы находимся в пространстве, являющегося частицей другого. Не стоит забывать и о других моделях Мультивселенной, в которой присутствуют открытые и закрытые параллельные миры, а также червоточины, которые их соединяют.

Если же отбросить все эти теории и обратиться только к холодному реализму, можно предположить, что Вселенная представляет собой бесконечное однородное вместилище всех галактик и звёзд. При этом в любой её точке, независимо от расположения, все условия будут одинаковыми. Будет точно такой же горизонт частиц, аналогичная сфера Хаббла, точно такое же реликтовое излучение у их границ. Вокруг этой точки будут миллиарды таких же звёзд и галактик. Данное предположение совершенно не противоречит теории расширения размеров Вселенной, потому что увеличивается само её пространство.

После всего вышеописанного можно задуматься о том насколько велик мир, в котором живёт человечество. Несмотря на значение, которое люди придают своему виду, они являются всего лишь микробами, даже на фоне Солнечной системы, не говоря о масштабах галактики и тем более всего космоса. Размеры Вселенной настолько колоссальны, что вряд ли человечество сможет полностью их осознать.

Масса

Визуализация наблюдаемой Вселенной в трех измерениях на протяжении 93 миллиардов световых лет (28 миллиардов парсеков ). Масштаб таков, что мелкие частицы света представляют собой группы большого числа сверхскоплений . Дева сверхскопление , где наша галактика , то Млечный Путь находится, находится в самом центре, но слишком мало , чтобы быть видимыми на изображении.

Вот три способа оценить по порядку величины эквивалент по количеству вещества энергии, присутствующей в наблюдаемой части нашей Вселенной. Они приводят к общему количеству атомов порядка 10 80 в круглых цифрах.

  1. Горизонт нашей Вселенной в настоящее время находится около 40 миллиардов световых лет от Земли . Если пренебречь эффектами кривизны пространства, объем видимого пространства составляет: 4/3 × π × R 3 = 2 × 10 80  м 3 . Критическая плотность Вселенной при постоянной Хаббла равна 75  км / с / Мпк , составляет: 3 × H 2 / (8 × π × G) = 10 -26  кг / м 3  ; или около 5 атомов водорода на кубический метр . Умножение этого на объем видимой части Вселенной дает 10 81  атома водорода.
  2. Типичная звезда «весит» около 2 × 10 30  кг (это масса Солнца ), что составляет около 10 57 атомов водорода на одну звезду. Типичная галактика может содержать от 100 миллиардов до 400 миллиардов звезд, поэтому каждая галактика будет иметь в среднем, согласно «пессимистическому» сценарию, приблизительно 1 × 10 57 × 1 × 10 11 = 1 × 10 68  атомов водорода. В наблюдаемой части нашей Вселенной будет от 100 до 200 миллиардов галактик, что дает в «пессимистическом» сценарии 1 × 10 68 × 100 × 10 9 = 1 × 10 79  атомов водорода во Вселенной.
  3. Наконец, простой, более строгий и менее произвольный способ оценки порядка величины искомых величин — это произвести вычисления по уравнениям Фридмана . Численное приложение, которое можно рассматривать как хорошее первое приближение к реальности, дает плотность тока 5 × 10 −27  кг / м 3 для общего объема Вселенной 10 81  м 3, из которых мы увидим только 20%. Эти числа приводят к 10 54  кг вещества, то есть к 5 × 10 80  атомов в наблюдаемой части нашей Вселенной.

Что мы сможем увидеть в будущем?

С течением времени наблюдаемая Вселенная становится все больше и больше. Потому что свет, исходящий откуда-то из ее далеких глубин, снова и снова достигает наших глаз.

Однако у подобного явления есть предел развития. Потому что наблюдаемая Вселенная имеет размер, который никогда не сможет превысить. Ведь фотоны, которые излучаются объектами, удаляющимися от нас быстрее скорости света из-за расширения Вселенной, никогда не достигнут Земли.

Расширение Вселенной, на самом деле, — это одна из самых интересных загадок космологии. Ведь результаты наблюдений показывают, пространство не просто постоянно расширяется, как, например, это делает надуваемый воздушный шар. А расширяется с ускорением!

Одним из следствий этого явления можно признать закон всеобщего разбегания галактик, или закон Хаббла. Он позволяет вычислить расстояния до далеких космических объектов, используя особенности излучаемых ими спектров электромагнитных волн. Все галактики, за исключением достаточно близких, для того, чтобы на них влияла гравитация Млечного Пути, например Галактика Андромеды, кажутся удаляющимися от нас. Потому что спектр их излучения смещен в красную сторону. Однако, на самом деле, эти галактики вовсе не летят сквозь пространство. Они как бы висят в нем более или менее неподвижно. «Движется» само пространство, в котором они расположены. Поставьте фломастером на упомянутом выше надуваемом воздушном шаре две точки. И продолжите его надувать. Видите? Эти точки начинают удаляться друг от друга. Просто потому что увеличивается площадь воздушного шара.

Что такое Вселенная? Определение

Вселенная – это необъятное пространство, которое невозможно охватить ни взглядом, ни человеческим разумом. Пространство, в котором рождаются, развиваются, стареют и умирают планеты и солнечные системы. Бесконечное множество галактик, управляемых Высшими силами – все это называется Вселенной.

Материалисты-прагматики считают, что Она возникла после большого взрыва в космическом пространстве. Однако в последнее время все большую популярность набирает мнение эзотериков о том, что саму Вселенную и все, что в ней находится, сотворил Высший разум и его иерархия.

Определение

Вселенная – это «мыслеформа» Творца. Это лаборатория, где Творец ставит опыты «руководствуясь» базовыми компонентами.

Масштабы Вселенной

У слова «вселенная» два значения. Первое – философское, обозначает весь мир, всё, что нас окружает. Второе – астрономическая вселенная, представляющая собой не абстрактное понятие, а материальные тела. Это то, что ещё называется космосом. С Земли можно увидеть небольшую часть Вселенной.

Люди с древности интересуются космосом, звёздами. Но строение Вселенной полностью не изучено до сих пор. Связано это с её огромными масштабами. Даже маленькая по сравнению с её размерами Солнечная система для человека огромна. Если построить её макет, взяв диаметр Солнца за 7 см, то Земля будет размером около 0,5 мм, а расстояние от неё до Солнца – 76 м.

Поэтому земные меры длины в масштабах Вселенной не применяются. В популярной литературе пользуются понятием «световой год». Это расстояние, равное около 10000 миллиардов километров.

В научной литературе пользуются такой единицей измерения, как парсек. Он составляет около 3,3 светового года. Ближайшая к нам звезда находится на расстоянии 1,3 парсек, а Солнце от центра Галактики удалено на 8000 парсек. Поэтому так сложно изучать строение Вселенной, и так мало человек знает о ней.

Популярная теория

Прежде чем погрузиться в тонкости увлекательной теории Мультивселенной, напомню, что инфляционная модель Вселенной — это гипотеза о физическом состоянии и законе расширения молодой Вселенной (вскоре после Большого взрыва), которая противоречит космологической модели горячей Вселенной. Дело в том, что эта общепринятая модель не лишена недостатков, многие из которых были решены в 1980-х годах ХХ века именно в результате построения инфляционной модели Вселенной.

Примечательно, что какой бы далекой наука о Вселенной не казалась неискушенному читателю, популярная культура совместно с учеными проделали по-настоящему потрясающую работу. Так, в последние годы жизни выдающийся физик-теоретик Стивен Хокинг трудился над темами, от которых у большинства исследователей – по их же признанию – «болит голова»: Хокинг в соавторстве с физиком Томасом Хертогом из Католического университета Левена в Бельгии работали над уже знаменитой статьей, посвященной проблеме Мультивселенной.

Как это часто случается в эпоху фейковых новостей и дезинформции, из-за того, что работа Хокинга и Хертога была размещена на сервере препринтов Airxiv (на этом сервере ученые обмениваются черновиками статей, прежде чем они будут опубликованы в рецензируемых научных журналах), это породило множество безосновательных сообщений о том, что Стивен Хокинг предсказал конец света а заодно предложил способ обнаружения альтернативных вселенных.

На самом же деле само исследование, опубликованное позже в журнале Journal of High Energy Physics, не столь сенсационно. В работе речь идет о парадоксе: если Большой Взрыв породил бесконечные вселенные с неисчерпаемым числом вариаций законов физики, то как ученые могут надеяться ответить на фундаментальные вопросы о том, почему наша Вселенная выглядит именно так как выглядит?

На фото британский физик-теоретик, космолог и астрофизик, писатель Стивен Хокинг

Когда Вселенная возникла, а это произошло примерно 13,8 миллиардов лет назад, она подверглась инфляционно-экспоненциальному расширению за очень короткий промежуток времени. В ходе этого процесса, крошечные квантовые флуктуации в пространстве были увеличены до космических размеров, создавая семена структур, которые станут галактиками и осветят вселенную. Однако, и это еще более удивительно, физик Андрей Линде предполагает, что инфляция по-прежнему происходит. Еще несколько лет назад в интервью The Washington Post он сравнил космос с постоянно растущим куском швейцарского сыра.

И да, если эта идея слишком сильно вас удивляет, вы не одиноки. Некоторые космологи всерьез опасаются «вечной инфляции» — и Мультивселенной, которая может возникнуть из нее. Во-первых, если различные карманные вселенные разъединены, то как мы вообще сможем проверить, что они существуют? Во-вторых, бесконечная Мультивселенная не поддается математическому анализу, что затрудняет использование модели для понимания того, как все работает и взаимодействует в космосе. Вопросов действительно очень много, так что давайте попробуем разобраться в этой увлекательной и популярной теории.

Какая наука изучает Вселенную?

Астрономия изучает Вселенную, расположение, движение, происхождение небесных тел и все, что связано с космосом. А ученые, исследующие все это, называются астрономами. Они изучают Солнце, звезды. Луну, планеты Солнечной системы, метеориты, кометы и многие другие небесные тела.

Изучая Вселенную, астрономы шаг за шагом проникали все дальше в ее таинственные глубины. Поняв и уточнив строение Солнечной системы, ученые обратились к Млечному Пути — гигантскому «содружеству» звезд и межзвездного вещества, существующему по особым «правилам». А следующий этап — открытие и исследование других звездных систем, похожих и непохожих на нашу, оказался крайне сложным. Ведь речь шла о расстояниях в сотни тысяч и миллионы световых лет!

А ведь еще в начале 20 в. не все астрономы верили в существование звезд и звездных систем за пределами нашей Галактики. И лишь с появлением сверхмощных телескопов нового поколения удалось измерить расстояния до самых отдаленных туманностей и галактик и хотя бы в общих чертах понять, как выглядит Вселенная «в целом».

Великая тайна

Здорово, правда? Вот только на самом деле эти структуры не настоящие. Они не связаны друг с другом и никогда не станут таковыми. Однако сама идея существования сверхскоплений и название для нашего – Ланиакея – будут сохраняться в течение длительного времени. Вот только назвав объект, реальным его не сделаешь: через миллиарды лет все различные компоненты будут просто разбросаны все дальше и дальше друг от друга, и в самом отдаленном будущем нашего воображения они исчезнут из поля зрения. Все это из-за того простого факта, что сверхскопления, несмотря на их названия, вовсе не являются структурами, а просто временными конфигурациями, которым суждено быть разорванными расширением Вселенной.

Представление об ужасающих масштабах мира

Ещё Коперник установил, что расстояние между нашей планетой и Солнцем мало по сравнению с расстоянием между Землёй и неподвижными светилами. Само понятие «неподвижные светила» уже не является актуальным. Но во времена Коперника под ним понимали небесные тела, которые видны с Земли невооружённым взглядом и не меняют своего видимого положения по отношению к другим звёздам за относительно непродолжительный период.

После этого три столетия учёным не удавалось сделать значимых открытий, которые бы могли пролить свет на размеры Вселенной. Во многом это связано с несовершенным техническим оснащением, заблуждением, что Солнце – её центр.

Прогресс наступил в 1837 году, когда российский астроном немецкого происхождения Василий Яковлевич Струве вычислил параллакс α Лиры. Уже это поставило под сомнение гелиоцентрическую систему мира и обеспечило благодатную почву для размышления о гигантских размерах Вселенной. Солнцу была отведена более скромная роль, наравне с другими звёздами.

Иерархия масштабов во Вселенной

Несколько интересных фактов о космосе, из-за которых вы почувствуете себя очень маленькими:

  • в межзвездном пространстве царит тишина;
  • есть звезда с температурой 26,7 градуса Цельсия и всего в 47 световых годах от нас — отличное место для межзвездного отпуска;
  • в космосе пахнет горячим металлом и обжаренным стейком — так утверждают многие астронавты;
  • люди могли бы летать, взмахивая прикрепленными к рукам крыльями, если бы жили на Титане, самом большом спутнике Сатурна. Это всего лишь теория, но атмосфера там действительно очень плотная, а сила тяжести слишком мала;
  • невозможно сосчитать количество звезд, существующих во Вселенной. Мы можем только предположить это число. Согласно исследованию Австралийского национального университета, это примерно 70 секстиллионов;
  • если представить Солнце размером с футбольный мяч, то Земля будет с горошину;
  • следы космонавтов, высадившихся на Луну, сохранятся миллионы лет, поскольку там нет атмосферы, дождей или ветра, чтобы стереть отпечатки;
  • Солнце из космоса кажется белым;
  • ученые обнаружили в космосе огромный водоем — в 140 триллионов раз больше наших океанов;
  • российский отчет о 33 тараканах, выведенных в космосе, показал, что они жестче, сильнее, смелее и быстрее тараканов на Земле;
  • каждый год Луна удаляется от нас на 1,5 дюйма;
  • существует явление, называемое учеными гравитационным линзированием: гравитация изгибает свет до такой степени, что объекты видятся в другом месте, нежели там, где существуют на самом деле;
  • самый большой из когда-либо обнаруженных астероидов называется Церера. Он огромен и, если столкнется с Землей, может положить конец существованию человечества;
  • космонавты после полета в космос вырастают до 5 см — из-за отсутствия гравитации позвоночник растягивается на 3 процента, по данным Европейского космического агентства;
  • если два куска металла соприкоснутся в космосе, они соединятся навсегда. Кислород в нашей атмосфере образует тонкий слой окисленного металла на каждой открытой поверхности — он действует как барьер, предотвращающий слипание кусков металла. Но поскольку в космосе нет кислорода, они прилипают — этот процесс называется холодной сваркой;
  • самая большая структура в наблюдаемой Вселенной имеет ширину около 6-10 миллиардов световых лет;
  • раз в 15 лет кольца Сатурна исчезают, если смотреть с Земли;
  • галактика Млечный Путь движется в пространстве со скоростью 552 км в секунду.

— Рави Джоши / Quora.com

Самые далекие объекты

На сегодняшний день (март 2016 г.) самой далекой из когда-либо наблюдаемых галактик является GN-z11 в созвездии Большой Медведицы , находящейся в 13,4 миллиарда световых лет от нас, вероятно, образовавшейся всего через 400 миллионов лет после Большого взрыва.

К другим наиболее далеким галактикам, наблюдаемым на сегодняшний день, относятся:

  • галактика z8 GND 5296 , об открытии которой было объявлено 23 октября 2013 года, образовалась примерно через 700 миллионов лет после Большого взрыва;
  • галактика MACS0647-JD , об открытии которой было объявлено 15 ноября 2012 г .;
  • галактика UDFy-38135539 , открытая в 2010 году, возрастом около 13,1 миллиарда лет;
  • галактика UDFj-39546284 , открытая в 2011 году, возраст которой оценивается примерно в 13,2 миллиарда лет;
  • галактики галактического скопления Abell 2218 , открытого в 2001 году, возраст которого оценивается примерно в 13 миллиардов лет.

Geek Picnic Online 2020

Теория Мультивселенной сегодня настолько популярна, что стала главной темой крупного европейского научно-популярного фестиваля (традиционно open air), посвященного современным технологиям, науке и творчеству Geek Picnic Online 2020. Среди приглашенных 122 спикеров были профессор Линде – его лекцию на русском языке можно посмотреть здесь, а также ирландский писатель фантаст Йен Макдональд. Как пишут организаторы фестиваля в официальном паблике мероприятия во Вконтакте, лекция Макдональда будет опубликована позже.

Скриншот лекции Андрея Линде, посвященной Мультивселенной

Как объясняет Линде, согласно теории Большого взрыва, после своего рождения Вселенная была очень маленькая, но в какой-то момент начала расширяться. При этом, в ранней Вселенной было намного больше энергии, чем сегодня. Часть этой энергии впоследствии ушла на расширение Вселенной. Однако главный вопрос заключается в том, откуда взялась вся эта энергия.

Представьте, что вечером ваши карманы пусты, а на утро в них лежит миллиард долларов, – говорит Линде. Но ведь в реальной жизни ничего подобного не происходит

Важно понимать, что все процессы, из-за которых родилась Вселенная, начались спонтанно

Что в итоге?

Размеры планет и звезд

Подводя итог важно отметить, что как масса, так и геометрические размеры звезд могут сильно отличаться. Одни обладают невообразимой плотностью, другие же наоборот, сильно разряжены

Звезды очень разнятся по светимости и цвету, температуре и срокам жизни. На размер звезд влияет сочетание двух сил — сила тяготения, что пытается сжать звезду, и давление разогретого внутри газа. В настоящее время теория эволюции звезд далека от своего совершенства.

Диаграмма Герцшпрунга — Рассела

Астрофизики не могут дать внятного ответа на банальный вопрос: «А на сколько большой и массивной может быть звезда?».

Конечно, есть фундаментальные ограничения, не позволяющие, например, существовать звезде размером с галактику. Звезды с массой от 8 до около 150 Солнечных проживают жизнь быстро, из-за того, что температура в их недрах колоссальна, и термоядерные реакции идут стремительно. Совсем недавно считалось, что пределом массы звезды является 150 масс Солнца. Но недавние исследования космоса показали, что и 300 Солнечных масс для звезды может быть не предел! В таких звездах кроме молниеносных реакций термоядерного синтеза возникают дополнительные флуктуации из-за взаимодействия пар частица-античастица. Такие супергигаганты могут взрываться еще до возникновения классического коллапса, попросту проходя процесс аннигиляции. Но все это пока теория.

Очень многое осталось за рамками этого повествования. Но всему свое время. А мы, пораженные столь разнообразными размерами звезд, усталые и довольные, даем команду «Одиссею» возвращаться на крохотную, но столь родную Землю.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector