Шаровые скопления звезд и где они встречаются

Красные звезды – звезды красного цвета

Если Вам хотя бы раз в жизни доводилось видеть в объективе своего телескопа красные звезды на небе, которые горели на черном фоне, то воспоминание данного момента поможет более четко представить то, о чем будет написано в этой статье. Если же Вашему взору ни разу не представлялись подобные звезды, в следующий раз обязательно попробуйте их отыскать.

Если взяться составлять список наиболее ярких красных звезд небосвода, которые можно с легкостью найти даже при помощи любительского телескопа, то можно обнаружить, что все они являются углеродными. Первые красные звезды были открыты еще в 1868 году. Температура таких красных гигантов низкая, кроме того, их внешние слои заполнены огромным количеством углерода. Если ранее подобные звезды составляли два спектральных класса – R и N, то сейчас ученые определили их в один общий класс – С. У каждого спектрального класса существуют подклассы – от 9 до 0. При этом класс С0 обозначает, что звезда имеет большую температуру, но менее красная, чем звезды класса С9. Также важным является то, что все звезды, в составе которых преобладает углерод, по своей сути переменные: долгопериодические, полуправильные или же неправильные.

Кроме того, в такой список попали и две звезды, именуемые красными полуправильными переменными, наиболее известная из которых – m Цефея. Ее необычным красным цветом заинтересовался еще Вильям Гершель, который окрестил ее «гранатовой». Для таких звезд характерно неправильное изменение светимости, которое может длиться от пары десятков до нескольких сотен дней. Такие переменные звезды относятся к классу М (звезды холодные, температура поверхности которых от 2400 до 3800 К).

Учитывая тот факт, что все звезды из рейтинга – переменные, необходимо внести определенную ясность в обозначения. Общепринято, что красные звезды имеют название, которое состоит из двух составных частей – буквы латинского алфавита и имени созвездия переменной (к примеру, Т Зайца). Первой переменной, которую открыли в данном созвездии, присваивается буква R и так далее, до буквы Z. Если же таких переменных много, для них предусматривается двойная комбинация латинских букв – от RR до ZZ. Такой способ позволяет «назвать» 334 объекта. Кроме того, можно звезды обозначать и при помощи буквы V в сочетании с порядковым номером (V228 Лебедя). Под обозначение переменных отведена первая колонка рейтинга.

Две следующих колонки в таблице обозначают месторасположение звезд в период 2000.0 года. В результате повышенной популярности атласа «Uranometria 2000.0» среди любителей астрономии, последняя колонка рейтинга отображает номер поисковой карты для каждой звезды, которая есть в рейтинге. При этом первая цифра является отображением номера тома, а вторая – порядковый номер карты.


Также в рейтинге отображаются максимальные и минимальные значения блеска звездных величин. Стоит помнить, что большая насыщенность красного цвета наблюдается у звезд, яркость которых минимальна. Для звезд, период переменности которых известен, он отображается в виде количества суток, а вот объекты, которые правильного периода не имеют, отображаются в виде Irr.

Для поиска углеродной звезды не нужна большая сноровка, достаточно, чтобы возможностей Вашего телескопа хватило, чтобы ее увидеть

Даже, если ее размеры небольшие, ее ярко выраженный красный цвет должен привлечь Ваше внимание. Поэтому не стоит расстраиваться, если не получается сразу их обнаружить

Достаточно воспользоваться атласом, чтобы найти близкорасположенную яркую звезду, и затем уже, двигаться от нее к красной.

Разные наблюдатели по-разному видят углеродные звезды. Некоторым они напоминают рубины или же горящий вдалеке уголек. Другие же видят в таких звездах малиновые или же кроваво-красные оттенки. Для начала в рейтинге есть список из шести наиболее ярких красных звезд, найдя и которые, Вы сможете вдоволь насладиться их красотой.

Скопление R136

Скопление R136 в туманности Тарантул — это гигантское скопление, состоящее из очень молодых и массивных звезд. Всего их насчитывается более 100 000 с общей массой 450 000 солнечных. Сейчас скопление похоже по форме на рассеянное, но в будущем, через миллиарды лет, силы тяготения, вероятно, превратят его в шаровое

R136 приковало к себе внимание астрономов в конце XX в. Предполагалось, что там находится огромная звезда с массой в 2000 раз больше массы Солнца

Теория строения звезд не допускает существования таких массивных светил. Впоследствии новые астрономические инструменты ведущих обсерваторий показали, что это не одна звезда, а очень плотный компонент скопления, содержащий несколько чрезвычайно ярких звезд с массой, превышающей 50 солнечных. Масса одной из них приближается к 300 солнечным, что тоже является вызовом теории.

Различия звезд по цвету

Существует огромное разнообразие звезд с непередаваемыми цветовыми оттенками. В результате этого даже одно созвездие получило название «Шкатулка с драгоценностями», основу которого составляют голубые и сапфировые звезды, а в самом его центре расположилась ярко светящая оранжевая звезда. Если рассматривать Солнце, то оно имеет бледно-желтый цвет.

Прямым фактором, влияющим на различие звезд по цвету, является температура их поверхности. Объясняется это просто. Свет по своей природе является излучением в виде волн. Длина волны – это расстояние между ее гребнями, является очень маленькой. Чтобы ее себе представить, нужно 1см разделить на 100 тыс. одинаковых частей. Несколько вот таких частичек и будут составлять длину волны света.

Учитывая, что это число получается достаточно маленьким, каждое, даже самое незначительное, его изменение станет причиной, по которой картинка, наблюдаемая нами, поменяется. Ведь наше зрение разную длину световых волн воспринимает в качестве разных цветов. К примеру, синий цвет имеют волны, длина которых в 1,5 раза меньше, чем у красных.

Также практически каждый из нас знает, что температура может оказывать самое прямое влияние на цвет тел. Для примера можно взять любой металлический предмет и положить его на огонь. Во время нагревания он станет красным. Если бы температура огня существенно повышалась, менялся бы и цвет предмета – с красного на оранжевый, с оранжевого на желтый, с желтого на белый, и, наконец, с белого на сине-белый.


Поскольку Солнце имеет температуру поверхности в районе 5,5 тыс. 0С, то оно является характерным примером желтых звезд. А вот наиболее горячие голубые звезды могут разогревать и до 33 тыс. градусов.

Цвет и температура были связаны учеными при помощи физических законов. Чем температура тела прямо пропорциональна его излучению и обратно пропорциональна длине волн. Волны синего цвета имеют более короткие длины волн в сравнение с красным. Раскаленные газы излучают фотоны, энергия которых прямо пропорциональна температуре и обратно пропорциональна длине волны. Именно поэтому для наиболее горячих звезд характерным является сине-голубой диапазон излучения.

Поскольку ядерное топливо на звездах не безгранично, оно имеет свойство расходоваться, что приводит к остыванию звезд. Поэтому звезды среднего возраста имеют желтый цвет, а старые звезды мы видим красными.

В результате того что Солнце находится очень близко к нашей планете, можно с точностью описать его цвет. А вот для звезд, которые находятся в миллионе световых лет от нас, задача усложняется. Именно для этого используется прибор, получивший название спектрограф. Сквозь него ученые пропускаю свет, излучаемый звездами, в результате чего можно можно спектрально проанализировать практически любую звезду.

Кроме того, при помощи цвета звезды, можно определить ее возраст, т.к. математические формулы позволяют использовать спектральный анализ для определения температуры звезды, по которой легко вычислить ее возраст.

Как насчет жизни?

Возможна ли жизнь на планете, которая кружит вокруг звезды, входящей в шаровое скопление? В том виде, в котором она нам известна, скорее всего нет. Да и вообще, шаровые скопления (или, по крайней мере, их ядра) вовсе не благоприятствуют возникновению планетных систем. Звезды в шаровых скоплениях находятся очень близко друг к другу. И орбиты планет здесь будут весьма нестабильными. Из-за возмущений, вызываемых близлежащими звездами. Поэтому, согласно некоторым расчетам, планета, вращающаяся вокруг звезды на том же расстоянии, что и Земля от Солнца, в ядре шарового скопления будет жить только около ста миллионов лет.

Не все шаровые скопления имею одинаковую плотность. В некоторых случаях в кубическом парсеке шарового скопления (парсек равен 3,26 светового года) содержится в среднем 0,4 звезды. Однако есть и такие скопления, где плотность возрастает до 100 или даже 1000 звезд в том же объеме пространства. Наиболее распространенное расстояние между звездами в шаровых скоплениях составляет около 1 светового года. Или чуть меньше четверти расстояния, отделяющего Солнце от ближайшей к нас звездной системы Альфа Центавра.

Некоторые из шаровых скоплений невероятно массивны. Их масса может быть эквивалентна нескольким миллионам солнечных масс. Возможно это указывают на то, что подобные сверхмассивные шаровые скопления на самом деле являются ядрами карликовых галактик. Которые когда-то были поглощены более крупными. Если это так, то возможно до четверти шаровых скоплений Млечного Пути — это остатки погибших галактик…

Необходимое оборудование

Шаровое скопление Мессье 3

Самые яркие шаровые скопления вы можете исследовать даже с помощью бинокля. С его помощью они визуализируются как лохматые шарообразные объекты неоднородной яркости. А если бинокль обладает широким полем зрения и стереоэффектом, то впечатления от наблюдений будут просто невероятными. Лучше использовать бинокль 10х50. В нем гармонично сочетаются простата эксплуатации и достаточная апертура. Отдельного упоминания достойны большие астрономические бинокли 20х100 и 20х80, с помощью которых можно наблюдать десятки шаровых скоплений, распадающихся на отдельные звезды.

В качестве недостатка биноклей можно назвать малое увеличение. Именно поэтому оптимальным инструментом для наблюдений шаровых скоплений следует считать телескоп. Если у телескопа имеется объектив 100 – 130 мм, то в темную ночь можно увидеть огромное количество шаровых скоплений, некоторые из которых распадаются на отдельные звезды. Далее следуют телескопы с объективом от 200 до 250 мм. Они воплощают в себе оптимальное сочетание малых размеров и широких оптических возможностей. С их помощью на территории стран СНГ можно наблюдать 70 – 80 объектов данного типа. Такие телескопы дают приятное подробное и очень яркое изображение. С помощью телескопов 350 – 450 мм можно разглядеть тусклые скопления из каталогов Terzan и Palomar. А более яркие скопления удивляют исследователя миллиардами звезд и красочными переливами.

Не спешите тратить деньги на покупку специальных фильтров UHC и OIII. Они не только не помогут в исследовании шаровых скоплений, но и навредят им. Иногда (к примеру, при наблюдении на участке с незначительной засветкой) немного улучшить видимость отдельных звезд в скоплениях помогают широкополосные фильтры SkyGlow и LPR. Чаще всего из-за блокировки части паразитного света от ртутных и натриевых ламп они слегка усиливают контраст между фоном неба и объектом наблюдения.

Туманность NGC 602

Данная диффузная туманность с рассеянным звездным скоплением расположена на окраине другого спутника нашей Галактики — Малого Магелланова Облака. Скопление очень молодое — ему 5 млн лет. Оно окружено газом и пылью, из которых родились его звезды.

Карликовые галактики, такие как Малое Магелланово Облако, со значительно меньшим количеством звезд, по сравнению с нашей собственной Галактикой, считаются примитивными строительными блоками для крупных галактик. Изучение процесса образования звезд в карликовой галактике особенно интересно для астрономов, поскольку считается, что в таких системах не хватает большого процента тяжелых элементов, которые рождаются и накапливаются в последующих поколениях звезд путем ядерного синтеза.

Внимательные зрители увидят на снимке и другие далекие галактики, кажущиеся крошечными только потому, что они в миллионы раз дальше от нас, чем Магеллановы Облака. Таким образом, можно оценить невероятные масштабы Вселенной.

Диаграмма Герцшпрунга-Рассела

Диаграмма Герцшпрунга-Рассела (HR — диаграмма) представляет собой график , который показывает звезды с их абсолютной яркости и цвета. Цветовой индекс показывает разницу между яркостью звезды в синем свете (B) и яркостью в желтом и зеленом свете (V). Большие положительные значения указывают на красную звезду с холодной температурой поверхности , а отрицательные значения указывают на синюю звезду с горячей поверхностью.

Если вы вводите звезды из области вокруг Солнца на диаграмме , то многие из них лежат на этой диаграмме в виде изогнутой кривой, так называемой основной серии . На диаграмме также присутствуют звезды на более поздних стадиях своей эволюции, которые немного отошли от главной последовательности.

Поскольку все звезды шарового скопления находятся примерно на одинаковом расстоянии от Земли, их абсолютная яркость отличается от видимой или видимой яркости на одинаковую величину. По оценкам, звезды главной последовательности в шаровом скоплении на диаграмме находятся на той же кривой, что и звезды в окрестностях Солнца. Точность этой оценки была подтверждена сравнением яркости соседних быстро меняющихся звезд, таких как звезды типа RR Лиры и цефеиды , с яркостью звездного скопления.

Поскольку эти кривые совпадают на диаграмме HR, можно определить абсолютную яркость звезд главной последовательности в звездном скоплении. С помощью видимой яркости звезд можно определить расстояние звездного скопления от Земли. Это расстояние определяется по разнице между видимой и абсолютной яркостью, .

Когда звезды шарового скопления нанесены на диаграмму HR, большинство из них находятся на хорошо определяемой кривой. Это отличается от звезд в окрестностях Солнца, поскольку здесь не собирались вместе звезды разного происхождения и возраста. Форма кривой характерна для группы звезд, которые образовались примерно в одно время из одного и того же материала и различаются только массой. Поскольку положения звезд шаровых скоплений на диаграмме HR различаются только возрастом, отсюда можно определить их возраст.

Диаграмма светимости шарового скопления M3 . Кривизна на 19-й «визуальной величине» (яркости), при которой звезды достигают уровня гигантской звезды, поражает.

Самые тяжелые звезды в шаровом скоплении также являются самыми яркими и первыми становятся звездами-гигантами . Позднее звезды с меньшей массой также превратятся в гигантов. Вы также можете определить возраст шарового скопления, ища звезды, которые уже достигли уровня гигантских звезд. Они образуют «изгиб» на диаграмме HR и соединяют нижний правый конец с линией основного ряда. Возраст шаровых скоплений можно определить непосредственно по абсолютной яркости этого «изгиба», так что ось возраста шаровых скоплений может быть проведена на диаграмме HR параллельно оси яркости. Однако с таким же успехом можно определить возраст, исследуя температуру самых холодных белых карликов в этом шаровом скоплении.

Типичный возраст шаровых скоплений — 12,7 миллиарда лет. Для сравнения, рассеянные звездные скопления намного моложе, им всего десять миллионов лет.

Возраст шаровых скоплений ограничивает возраст всей Вселенной. Нижний предел смутил космологию . В начале 1990-х астрономы обнаружили шаровые скопления, которые оказались старше, чем позволяла космологическая модель. Однако более точные измерения космологических параметров, например, со спутником COBE , показали, что более ранние измерения были неверными.

Изучая присутствие металлов (в астрономии металлы — это элементы, которые тяжелее гелия ), можно определить концентрацию исходных веществ, а затем перенести эти значения на весь Млечный Путь.

Недавние исследования с использованием космических спутников и телескопов 8-метрового класса показали, что все детально изученные шаровые скопления не состоят из химически однородной популяции. Изменения в содержании таких элементов, как углерод, кислород, азот, натрий и алюминий, были обнаружены спектроскопически в различных шаровых скоплениях, а присутствие нескольких основных последовательностей было обнаружено фотометрически . Особый пример — Омега Центавра , в которой можно обнаружить три отдельных основных ряда и пять различимых ветвей красных гигантов . Поэтому при образовании шаровых скоплений произошло несколько фаз звездообразования.

Центавр А

Эта галактика — одна из ближайших к нам, пятая по яркости на небе (после Магеллановых Облаков, туманности Андромеды и галактики Треугольника). В Южном полушарии она легко видна в бинокль. Центавр А принадлежит к редкому типу галактик — линзовидным с полярным кольцом. Это плоский звездный диск без признаков спиральных ветвей, вокруг которого перпендикулярно его полюсам вращается кольцо из звезд и пыли. Центавр А — ближайшая к нам активная галактика, ярчайший источник радиоизлучения. Ее ядро испускает такое мощное излучение в радио- и рентгеновском диапазонах, что его нельзя объяснить свойствами имеющихся там звезд, газа и пыли. На сегодняшний день основой гипотезой, объясняющей такую активность, считается наличие в центре галактик сверхмассивных черных дыр (от 106 до 109 масс Солнца).

7.1.3. Звездные скопления window.top.document.title = «7.1.3. Звездные скопления»;

В Галактике каждая третья звезда – двойная, имеются системы из трех и более звезд. Известны и более сложные объекты – звездные скопления.


Рисунок 7.1.3.1.Рассеянное скопление M50 в созвездии Единорога

Рассеянные звездные скопления встречаются вблизи галактической плоскости. Сейчас известно более 1200 рассеянных скоплений, из них детально изучено 500. Самые известные среди них – Плеяды и Гиады в созвездии Тельца. Общее количество рассеянных скоплений в Галактике, возможно, достигает ста тысяч.

Рассеянные скопления состоят из сотен или тысяч звезд. Их масса невелика (100–1000 M), и гравитационное поле не может долго сдерживать их в малом объеме пространства, поэтому за миллиарды лет рассеянные скопления распадаются. Среди рассеянных звездных скоплений гораздо больше молодых звезд, чем старых. Все звезды, входящие в состав скопления, имеют общее движение.

В двадцатых годах ХХ века Харлоу Шепли исследовал рассеянные скопления и произвел классификацию звезд. Диаграмма Герцшпрунга – Рассела для семи рассеянных скоплений показала, что практически все их звезды лежат на главной последовательности.

Средние размеры рассеянных скоплений от 2 до 20 парсеков. Большинство рассеянных скоплений расположено в диске нашей Галактике, где сконцентрированы скопления пыли и межзвездного газа, в спиральных рукавах.


Рисунок 7.1.3.2.Рассеянное скопление «Плеяды» содержит много ярких, горячих звезд, которые были сформированы в одно и то же время из газопылевого облака. Голубая дымка, сопутствующая «Плеядам», – рассеянная пыль, отражающая свет звезд

Шаровые скопления сильно выделяются на звездном фоне благодаря значительному числу звезд и четкой сферической форме. Диаметр шаровых скоплений составляет от 20 до 100 пк, а масса – 104–106 М. Вся сфера шарового скопления густо заполнена звездами, их концентрация растет к центру. Сейчас известно свыше 150 скоплений; предполагается, что в нашей Галактике их не больше нескольких сотен. В шаровых скоплениях двойные звезды встречаются редко. Некоторые двойные системы в шаровых скоплениях являются рентгеновскими источниками излучения.

Шаровые скопления – старейшие образования в нашей Галактике, их возраст от 10 до 15 миллиардов лет и сравним с возрастом Вселенной. Бедный химический состав и вытянутые орбиты, по которым они движутся в Галактике, говорят о том, что шаровые скопления образовались в эпоху формирования самой Галактики.

Возраст звезд, входящих в состав шаровых скоплений, солиден, поэтому все массивные звезды прошли длинный путь эволюции и стали нейтронными звездами или белыми карликами. В результате, в шаровых скоплениях наблюдаются вспышки новых звезд, рентгеновские источники и пульсары. Шаровые скопления также богаты переменными типа RR Лиры.


Рисунок 7.1.3.3.Шаровое скопление в созвездии Центавра

Рисунок 7.1.3.4.Шаровое скопление M13 в созвездии Геркулеса

Помимо рассеянных звездных скоплений хорошо изучен еще один тип группировок молодых звезд – звездные ассоциации. Их начали изучать в двадцатых годах ХХ века.

ОВ-ассоциации имеют протяженность от 15 до 300 пк и содержат от нескольких десятков до нескольких сотен горячих голубых гигантов и сверхгигантов. Поскольку гиганты ранних спектральных классов быстро проходят путь эволюции, то все звезды образовались в одно время и имеют небольшой возраст.

Т-ассоциации содержат переменные звезды типа Т Тельца, которые еще не достигли главной последовательности и находятся на самых ранних этапах звездной эволюции. В таких ассоциациях открыты источники инфракрасного излучения, связанные с рождающимися массивными звездами.

Взаимодействующие галактики NGC 2207 и IC 2163

В гигантских масштабах нашей расширяющейся Вселенной объекты порой разъединяют гигантские расстояния. Однако даже на безграничных космических просторах происходят различные катаклизмы. Самыми эффектными из них являются столкновения галактик.

Более крупная галактика на этом снимке — NGC 2207, меньшая — IC 2163. Приливные силы от NGC 2207 искажают форму IC 2163. Однако столкновения и взаимодействие галактик не такая страшная вещь, как кажется со стороны. Ведь галактики состоят из звезд, отделенных друг от друга гигантскими расстояниями. Сами звезды, как правило, не сталкиваются друг с другом, а лишь меняют свою траекторию.

Гравитационные силы при тесном сближении галактик способны ускорить процессы звездообразования и эволюции внутри них. В частности, может повыситься число вспышек сверхновых. Совсем недавно, 2 марта 2013 г., сверхновая была замечена в NGC 2207.

Шаровые звездные скопления

Шаровые звездные скопления, известные в числе около сотни, имеют своего типичного представителя в лице звездного скопления в Геркулесе, видимого в бинокль как туманная звездочка примерно шестой звездной величины. Лишь сильный телескоп, а в особенности фотография показывают, что тут в форме шара существует целое скопление звезд, сильно концентрирующихся к его центру.

На самом деле эта “туманная звездочка” состоит из сотен тысяч звезд, из которых мы видим только гиганты. Звезды же главной ветви, в частности, размером такие же как Солнце, для нас остаются невидимыми. Именно из-за удаленности и многочисленности, особенно вблизи центра, звезды сливаются для наблюдателя с земли, в одно сплошное светлое сияние.

Шаровое звездное скопление NGC 3572

Одно из ближайших к нам шаровых скоплений — то, что находится в Геркулесе — отстоит от нас на 30 тысяч световых лет, а его диаметр — сотня световых лет.

Наиболее далекие из шаровых скоплений отстоят от нас на 230 тысяч световых лет. Определение расстояний шаровых скоплений говорит нам о том, что шаровые скопления простираются до границы нашей звездной системы.

Представляя себе любые звездные скопления стоит помнить о том, что  “кучность” находящихся в них звезд только кажущаяся, представляющая в реальности лишь оптический обман вызванный чудовищным расстоянием отделяющим нас от ближайших звездных скоплений и галактик.

На самом деле звезды настолько далеки одна от другой, что столкновения между ними никогда не наблюдались в истории астрономии, а может быть и невозможны совсем. Во всяком случае вычисления показывают, что средняя звезда, движущаяся в произвольном направлении через галактику, даже при сближении с другими звездами вряд ли испытает реальное столкновение с одной из них, а будет лишь слегка отклонена от своего пути.

Голубые отставшие звезды – звезды голубого цвета

Звезды, находящиеся в звездных скоплениях шарового типа, температура у которых выше температуры обычных звезд, а для спектра характерно существенное смещение к синей области, чем у звезд скопления с аналогичной светимостью, получили название голубые звезды отставшие. Это признак позволяет им выделяться относительно других звезд этого скопления на диаграмме Герцшпрунга-Рассела. Существование таких звезд опровергает все теории эволюции звезд, суть которой заключается в том, что для звезд, которые возникли в один и тот же промежуток времени, предполагается размещение в четко определенной области диаграммы Герцшпрунга-Рассела. При этом единственным фактором, который влияет на точное местоположение звезды, является ее начальная масса. Частое появление голубых отставших звезд вне пределов вышеупомянутой кривой, может стать подтверждением существования такого понятия, как аномальная звездная эволюция.

Специалисты, пытающиеся объяснить природу их возникновения, выдвинули несколько теорий. Наиболее вероятная из них указывает о том, что данные звезды голубого цвета в прошлом были двойными, после чего у них начал происходить или происходит сейчас процесс слияния. Итогом слияния двух звезд становится возникновение новой звезды, имеющей гораздо большую массу, яркость и температуру, чем звезды такого же возраста.

Если верность этой теории удастся каким-то образом доказать, теория звездной эволюции лишилась бы проблем в виде голубых отставших. В составе получившейся звезды имелось бы большее количество водорода, который вел бы себя аналогично молодой звезде. Существуют факты, подтверждающие такую теорию. Наблюдения показали, что чаще всего отставшие звезды встречаются в центральных регионах шаровых скоплений. В результате преобладающего там числа звезд единичного объема, близкие прохождения или же столкновения становятся более вероятными.

Для проверки данной гипотезы необходимо заняться изучением пульсации голубых отставших, т.к. между астросейсмологическими свойствами слившихся звезд и нормально пульсирующих переменных, могут быть некоторые отличия. Стоит отметить, что измерять пульсации достаточно тяжело. На этот процесс также негативно переполненность звездного неба, малые колебания пульсаций голубых отставших, а также редкость их переменных.

Один из примеров слияния можно было наблюдать в августе 2008 года, тогда такое происшествие коснулось объекта V1309, яркость которого после обнаружения возросла несколько десятков тысяч раз, а по прошествии нескольких месяцев вернулась к первоначальному значению. В результате 6-летних наблюдений, ученые пришли к выводу, что данный объект является двумя звездами, период обращения которых друг вокруг друга составляет 1,4 дня. Эти факты натолкнули ученых на мысль, что в августе 2008 года происходил процесс слияния этих двух звезд.

Для голубых отставших характерным является высокий вращательный момент. К примеру, скорость вращения звезды, которая располагается в середине скопления 47 Тукана, в 75 раз превышает скорость вращения Солнца. Согласно гипотезе, их масса в 2-3 раза превышает массу иных звезд, которые располагаются в скоплении. Также при помощи исследований было установлено, что если звезды голубого цвета близко располагаются к каким либо другим звездам, то у последних будет процентное содержание кислорода и углерода ниже, чем у соседей. Предположительно, звезды перетягивают данные вещества с других, движущихся по их орбите звезд, в результате чего возрастает их яркость и температура. У «обворованных» звезд обнаруживаются места, где произошел процесс превращения исходного углерода в другие элементы.

Изучение

На данный момент, природа возникновения этих космических объектов изучена не до конца. Так как остаётся открытым вопрос какие звезды входят в шаровые скопления. Точнее состоят ли они из светил одного возраста или включают тела, которые уже прошли множество циклов.

Хотя в большинстве случаев звёзды находятся примерно на одном этапе эволюции. Что позволяет предположить об одном времени их формирования. Однако некоторые соединения содержат различные по возрасту элементы.

Скопление M 80 в созвездии Скорпиона

В результате наблюдений выделили одну закономерность. Шаровые скопления появляются в звездообразующих областях космоса. Где, соответственно, межзвёздная среда более плотная.

Прежде всего, они их много в районах со вспышками звёздообразования и в галактиках, взаимодействующих друг с другом.

Между тем, в шаровых группах не происходит активного образования звёзд. А значит, они представляют собой очень старые объекты Вселенной и состоят из тел преклонного возраста.

Вдобавок химический состав и вытянутые орбиты указывают на то, что они зародились примерно в одно время с самой Галактикой. Проще говоря, это древнейшие элементы космического пространства. Стоит отметить, что их возраст составляет 10-20 млрд лет.

По правде, шаровые скопления не редко встречаются во Вселенной. Например, Млечный Путь вмещает более 150 сферичных групп, которые сформировались приблизительно 10 млрд лет назад. По данным учёных, в их элементах мало тяжёлых элементов и их высокая плотность. Из-за этого не может быть и речи про планетообразование в таких областях.

К примеру, из рассеянных самым известным является скопление Плеяды из созвездия Тельца. Между прочим, это одно из ближайших к нам подобных образований.А к сферическим относятся, в основном, такие объекты Мессье, как М2, М4, М5, М13 и другие.

  • М 2 (NGC 7089)
  • NGC 6121 (M 4)
  • NGC 5904 (Мессье 5)
  • М 13 (NGC 6205)

Сегодня мы узнали, что такое шаровые образования и в каких звездных скоплениях больше звезд. Безусловно, их исследование играет важную роль в изучении эволюции светил, возраста Вселенной, галактических формированиях и структурах.Без сомнения, звёздные группы очень интересные и красочные объекты.

Туманность Андромеды

Темными осенними вечерами в созвездии Андромеды можно невооруженным глазом увидеть маленькое туманное пятно. О нем знали еще в древние времена: в Х в. персидский астроном Ас-Суфи упоминает его в своем звездном каталоге. Телескоп на созвездие впервые навел Симон Мариус в 1612 г., а Шарль Мессье в следующем столетии включил его в свой каталог туманностей под номером 31. Только в ХХ в., когда астрономы смогли разделить ее изображение на отдельные звезды, а Эдвин Хаббл сумел определить расстояние до них, стало окончательно ясно, что это не газовое облако, а далекая галактика, которая больше и массивнее, чем Млечный Путь. Однако в популярных текстах ее часто называют по-старому — туманность Андромеды. Она содержит примерно триллион звезд, что, по разным оценкам, от 2 до 5 раз больше, чем в нашей Галактике. Кстати, Млечный Путь и туманность Андромеды приближаются друг к другу и, возможно, через 3–4 млрд лет сольются в одну большую галактику.

Значение звездных скоплений для астрономии

Звездное скопление Мессье 7, снимок ESO

С развитием цивилизации мистико-поэтические представления о строении небесного свода существенно видоизменились и систематизировались, приобретя гораздо более рациональные очертания, но исторические звучные названия сохранились. Оказалось, что кажущиеся близкорасположенными звезды могут в реальности находиться далеко друг от друга и наоборот. Поэтому возникла необходимость создать звездную иерархию, соответствующую современным представлениям о мироздании. Так, в астрономической классификации появился термин «звездные скопления», объединяющий группу звезд, движущихся в своей галактике как одно целое.

Эти образования чрезвычайно интересны тем, что входящие в них светила, были образованы примерно одновременно и располагаются по космическим меркам на одном расстоянии от земного наблюдателя, что дает дополнительные возможности, позволяя сравнивать излучение от различных источников одного скопления без соответствующих поправок. Сигналы, поступающие от них, искажаются одинаково, что существенно облегчает работу астрофизиков, изучающих структуру и эволюцию звездных систем и Вселенной в целом, принципы формирования галактик, процессы звездообразования и их разрушения, а также многое другое.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector